#include #include #include "ardour/types.h" #ifndef __interpolation_h__ #define __interpolation_h__ namespace ARDOUR { class Interpolation { protected: double _speed, _target_speed; // the idea is that when the speed is not 1.0, we have to // interpolate between samples and then we have to store where we thought we were. // rather than being at sample N or N+1, we were at N+0.8792922 std::vector phase; public: Interpolation () { _speed = 1.0; _target_speed = 1.0; } ~Interpolation () { phase.clear(); } void set_speed (double new_speed) { _speed = new_speed; _target_speed = new_speed; } void set_target_speed (double new_speed) { _target_speed = new_speed; } double target_speed() const { return _target_speed; } double speed() const { return _speed; } void add_channel_to (int input_buffer_size, int output_buffer_size) { phase.push_back (0.0); } void remove_channel_from () { phase.pop_back (); } void reset () { for (size_t i = 0; i < phase.size(); i++) { phase[i] = 0.0; } } }; class LinearInterpolation : public Interpolation { protected: public: nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output); }; class CubicInterpolation : public Interpolation { protected: // shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h) static inline float cube_interp(const float fr, const float inm1, const float in, const float inp1, const float inp2) { return in + 0.5f * fr * (inp1 - inm1 + fr * (4.0f * inp1 + 2.0f * inm1 - 5.0f * in - inp2 + fr * (3.0f * (in - inp1) - inm1 + inp2))); } public: nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output); }; } // namespace ARDOUR #endif