/* Copyright (C) 2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include "ardour/amp.h" #include "ardour/audio_buffer.h" #include "ardour/buffer_set.h" #include "ardour/configuration.h" #include "ardour/io.h" #include "ardour/session.h" namespace ARDOUR { Amp::Amp(Session& s, IO& io) : Processor(s, "Amp") , _io(io) , _mute(false) , _apply_gain(true) , _apply_gain_automation(false) , _current_gain(1.0) , _desired_gain(1.0) { } bool Amp::can_support_io_configuration (const ChanCount& in, ChanCount& out) const { out = in; return true; } bool Amp::configure_io (ChanCount in, ChanCount out) { if (out != in) { // always 1:1 return false; } return Processor::configure_io (in, out); } void Amp::run_in_place (BufferSet& bufs, nframes_t start_frame, nframes_t end_frame, nframes_t nframes) { gain_t* gab = _session.gain_automation_buffer(); if (_mute && !bufs.is_silent()) { Amp::apply_gain (bufs, nframes, _current_mute_gain, _desired_mute_gain, false); if (_desired_mute_gain == 0.0f) { bufs.is_silent(true); } } if (_apply_gain) { if (_apply_gain_automation) { if (_io.phase_invert()) { for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const sp = i->data(); for (nframes_t nx = 0; nx < nframes; ++nx) { sp[nx] *= -gab[nx]; } } } else { for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const sp = i->data(); for (nframes_t nx = 0; nx < nframes; ++nx) { sp[nx] *= gab[nx]; } } } } else { /* manual (scalar) gain */ if (_current_gain != _desired_gain) { Amp::apply_gain (bufs, nframes, _current_gain, _desired_gain, _io.phase_invert()); _current_gain = _desired_gain; } else if (_current_gain != 0.0f && (_io.phase_invert() || _current_gain != 1.0f)) { /* no need to interpolate current gain value, but its non-unity, so apply it. if the gain is zero, do nothing because we'll ship silence below. */ gain_t this_gain; if (_io.phase_invert()) { this_gain = -_current_gain; } else { this_gain = _current_gain; } for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const sp = i->data(); apply_gain_to_buffer(sp, nframes, this_gain); } } else if (_current_gain == 0.0f) { for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { i->clear(); } } } } } /** Apply a declicked gain to the audio buffers of @a bufs */ void Amp::apply_gain (BufferSet& bufs, nframes_t nframes, gain_t initial, gain_t target, bool invert_polarity) { if (nframes == 0) { return; } if (bufs.count().n_audio() == 0) { return; } // if we don't need to declick, defer to apply_simple_gain if (initial == target) { if (target == 0.0) { for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { memset (i->data(), 0, sizeof (Sample) * nframes); } } else if (target != 1.0) { for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { apply_gain_to_buffer (i->data(), nframes, target); } } return; } const nframes_t declick = std::min ((nframes_t)128, nframes); gain_t delta; double fractional_shift = -1.0/declick; double fractional_pos; gain_t polscale = invert_polarity ? -1.0f : 1.0f; if (target < initial) { /* fade out: remove more and more of delta from initial */ delta = -(initial - target); } else { /* fade in: add more and more of delta from initial */ delta = target - initial; } for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const buffer = i->data(); fractional_pos = 1.0; for (nframes_t nx = 0; nx < declick; ++nx) { buffer[nx] *= polscale * (initial + (delta * (0.5 + 0.5 * cos (M_PI * fractional_pos)))); fractional_pos += fractional_shift; } /* now ensure the rest of the buffer has the target value applied, if necessary. */ if (declick != nframes) { if (invert_polarity) { target = -target; } if (target == 0.0) { memset (&buffer[declick], 0, sizeof (Sample) * (nframes - declick)); } else if (target != 1.0) { apply_gain_to_buffer (&buffer[declick], nframes - declick, target); } } } } void Amp::apply_simple_gain (BufferSet& bufs, nframes_t nframes, gain_t target) { } XMLNode& Amp::state (bool full_state) { return get_state(); } XMLNode& Amp::get_state() { XMLNode* node = new XMLNode(state_node_name); node->add_property("type", "amp"); return *node; } } // namespace ARDOUR