/* Copyright (C) 2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include "evoral/Curve.hpp" #include "ardour/amp.h" #include "ardour/audio_buffer.h" #include "ardour/buffer_set.h" #include "ardour/configuration.h" #include "ardour/io.h" #include "ardour/midi_buffer.h" #include "ardour/session.h" #include "i18n.h" using namespace ARDOUR; using namespace PBD; Amp::Amp (Session& s) : Processor(s, "Amp") , _apply_gain(true) , _apply_gain_automation(false) , _current_gain(1.0) { boost::shared_ptr gl(new AutomationList(Evoral::Parameter(GainAutomation))); _gain_control = boost::shared_ptr( new GainControl(X_("gaincontrol"), s, this, Evoral::Parameter(GainAutomation), gl )); add_control(_gain_control); } std::string Amp::display_name() const { return _("Fader"); } bool Amp::can_support_io_configuration (const ChanCount& in, ChanCount& out) const { out = in; return true; } bool Amp::configure_io (ChanCount in, ChanCount out) { if (out != in) { // always 1:1 return false; } return Processor::configure_io (in, out); } void Amp::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool) { if (!_active && !_pending_active) { return; } if (_apply_gain) { if (_apply_gain_automation) { gain_t* gab = _session.gain_automation_buffer (); for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const sp = i->data(); for (pframes_t nx = 0; nx < nframes; ++nx) { sp[nx] *= gab[nx]; } } _current_gain = gab[nframes-1]; } else { /* manual (scalar) gain */ gain_t const dg = _gain_control->user_double(); if (_current_gain != dg) { Amp::apply_gain (bufs, nframes, _current_gain, dg); _current_gain = dg; } else if (_current_gain != 1.0f) { /* gain has not changed, but its non-unity */ for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::MIDIEvent ev = *m; if (ev.is_note_on()) { ev.scale_velocity (_current_gain); } } } for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { apply_gain_to_buffer (i->data(), nframes, _current_gain); } } } } _active = _pending_active; } void Amp::apply_gain (BufferSet& bufs, framecnt_t nframes, gain_t initial, gain_t target) { /** Apply a (potentially) declicked gain to the buffers of @a bufs */ if (nframes == 0 || bufs.count().n_total() == 0) { return; } // if we don't need to declick, defer to apply_simple_gain if (initial == target) { apply_simple_gain (bufs, nframes, target); return; } const framecnt_t declick = std::min ((framecnt_t) 128, nframes); gain_t delta; double fractional_shift = -1.0/declick; double fractional_pos; if (target < initial) { /* fade out: remove more and more of delta from initial */ delta = -(initial - target); } else { /* fade in: add more and more of delta from initial */ delta = target - initial; } /* MIDI Gain */ for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::MIDIEvent ev = *m; if (ev.is_note_on()) { gain_t scale = delta * (ev.time()/(double) nframes); ev.scale_velocity (initial+scale); } } } /* Audio Gain */ for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const buffer = i->data(); fractional_pos = 1.0; for (pframes_t nx = 0; nx < declick; ++nx) { buffer[nx] *= (initial + (delta * (0.5 + 0.5 * cos (M_PI * fractional_pos)))); fractional_pos += fractional_shift; } /* now ensure the rest of the buffer has the target value applied, if necessary. */ if (declick != nframes) { if (target == 0.0) { memset (&buffer[declick], 0, sizeof (Sample) * (nframes - declick)); } else if (target != 1.0) { apply_gain_to_buffer (&buffer[declick], nframes - declick, target); } } } } void Amp::declick (BufferSet& bufs, framecnt_t nframes, int dir) { /* Almost exactly like ::apply_gain() but skips MIDI buffers and has fixed initial+target values. */ if (nframes == 0 || bufs.count().n_total() == 0) { return; } const framecnt_t declick = std::min ((framecnt_t) 128, nframes); gain_t delta, initial, target; double fractional_shift = -1.0/declick; double fractional_pos; if (dir < 0) { /* fade out: remove more and more of delta from initial */ delta = -1.0; initial = 1.0; target = 0.0; } else { /* fade in: add more and more of delta from initial */ delta = 1.0; initial = 0.0; target = 1.0; } /* Audio Gain */ for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const buffer = i->data(); fractional_pos = 1.0; for (pframes_t nx = 0; nx < declick; ++nx) { buffer[nx] *= (initial + (delta * (0.5 + 0.5 * cos (M_PI * fractional_pos)))); fractional_pos += fractional_shift; } /* now ensure the rest of the buffer has the target value applied, if necessary. */ if (declick != nframes) { if (target == 0.0) { memset (&buffer[declick], 0, sizeof (Sample) * (nframes - declick)); } else if (target != 1.0) { apply_gain_to_buffer (&buffer[declick], nframes - declick, target); } } } } void Amp::apply_gain (AudioBuffer& buf, framecnt_t nframes, gain_t initial, gain_t target) { /** Apply a (potentially) declicked gain to the contents of @a buf */ if (nframes == 0) { return; } // if we don't need to declick, defer to apply_simple_gain if (initial == target) { apply_simple_gain (buf, nframes, target); return; } const framecnt_t declick = std::min ((framecnt_t) 128, nframes); gain_t delta; double fractional_shift = -1.0/declick; double fractional_pos; if (target < initial) { /* fade out: remove more and more of delta from initial */ delta = -(initial - target); } else { /* fade in: add more and more of delta from initial */ delta = target - initial; } Sample* const buffer = buf.data(); fractional_pos = 1.0; for (pframes_t nx = 0; nx < declick; ++nx) { buffer[nx] *= (initial + (delta * (0.5 + 0.5 * cos (M_PI * fractional_pos)))); fractional_pos += fractional_shift; } /* now ensure the rest of the buffer has the target value applied, if necessary. */ if (declick != nframes) { if (target == 0.0) { memset (&buffer[declick], 0, sizeof (Sample) * (nframes - declick)); } else if (target != 1.0) { apply_gain_to_buffer (&buffer[declick], nframes - declick, target); } } } void Amp::apply_simple_gain (BufferSet& bufs, framecnt_t nframes, gain_t target) { if (target == 0.0) { for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::MIDIEvent ev = *m; if (ev.is_note_on()) { ev.set_velocity (0); } } } for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { memset (i->data(), 0, sizeof (Sample) * nframes); } } else if (target != 1.0) { for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::MIDIEvent ev = *m; if (ev.is_note_on()) { ev.scale_velocity (target); } } } for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { apply_gain_to_buffer (i->data(), nframes, target); } } } void Amp::apply_simple_gain (AudioBuffer& buf, framecnt_t nframes, gain_t target) { if (target == 0.0) { memset (buf.data(), 0, sizeof (Sample) * nframes); } else if (target != 1.0) { apply_gain_to_buffer (buf.data(), nframes, target); } } void Amp::inc_gain (gain_t factor, void *src) { float desired_gain = _gain_control->user_double(); if (desired_gain == 0.0f) { set_gain (0.000001f + (0.000001f * factor), src); } else { set_gain (desired_gain + (desired_gain * factor), src); } } void Amp::set_gain (gain_t val, void *src) { // max gain at about +6dB (10.0 ^ ( 6 dB * 0.05)) if (val > 1.99526231f) { val = 1.99526231f; } //cerr << "set desired gain to " << val << " when curgain = " << _gain_control->get_value () << endl; if (src != _gain_control.get()) { _gain_control->set_value (val); // bit twisty, this will come back and call us again // (this keeps control in sync with reality) return; } _gain_control->set_double(val, false); _session.set_dirty(); } XMLNode& Amp::state (bool full_state) { XMLNode& node (Processor::state (full_state)); node.add_property("type", "amp"); node.add_child_nocopy (_gain_control->get_state()); return node; } int Amp::set_state (const XMLNode& node, int version) { XMLNode* gain_node; Processor::set_state (node, version); if ((gain_node = node.child (Controllable::xml_node_name.c_str())) != 0) { _gain_control->set_state (*gain_node, version); } return 0; } void Amp::GainControl::set_value (double val) { // max gain at about +6dB (10.0 ^ ( 6 dB * 0.05)) if (val > 1.99526231f) { val = 1.99526231f; } _amp->set_gain (val, this); AutomationControl::set_value(val); } double Amp::GainControl::get_value (void) const { return AutomationControl::get_value(); } void Amp::setup_gain_automation (framepos_t start_frame, framepos_t end_frame, framecnt_t nframes) { Glib::Mutex::Lock am (control_lock(), Glib::TRY_LOCK); if (am.locked() && _session.transport_rolling() && _gain_control->automation_playback()) { _apply_gain_automation = _gain_control->list()->curve().rt_safe_get_vector ( start_frame, end_frame, _session.gain_automation_buffer(), nframes); } else { _apply_gain_automation = false; } } bool Amp::visible() const { return true; }