/* Copyright (C) 2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include "evoral/Curve.hpp" #include "ardour/amp.h" #include "ardour/audio_buffer.h" #include "ardour/buffer_set.h" #include "ardour/gain_control.h" #include "ardour/midi_buffer.h" #include "ardour/rc_configuration.h" #include "ardour/session.h" #include "pbd/i18n.h" using namespace ARDOUR; using namespace PBD; // used for low-pass filter denormal protection #define GAIN_COEFF_TINY (1e-10) // -200dB Amp::Amp (Session& s, const std::string& name, boost::shared_ptr gc, bool control_midi_also) : Processor(s, "Amp") , _apply_gain(true) , _apply_gain_automation(false) , _current_gain(GAIN_COEFF_ZERO) , _current_automation_frame (INT64_MAX) , _gain_control (gc) , _gain_automation_buffer(0) , _midi_amp (control_midi_also) { set_display_name (name); add_control (_gain_control); } bool Amp::can_support_io_configuration (const ChanCount& in, ChanCount& out) { out = in; return true; } bool Amp::configure_io (ChanCount in, ChanCount out) { if (out != in) { // always 1:1 return false; } return Processor::configure_io (in, out); } static void scale_midi_velocity(Evoral::Event& ev, float factor) { factor = std::max(factor, 0.0f); ev.set_velocity(std::min(127L, lrintf(ev.velocity() * factor))); } void Amp::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, double /*speed*/, pframes_t nframes, bool) { if (!_active && !_pending_active) { return; } if (_apply_gain) { if (_apply_gain_automation) { gain_t* gab = _gain_automation_buffer; assert (gab); if (_midi_amp) { for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::Event ev = *m; if (ev.is_note_on()) { assert(ev.time() >= 0 && ev.time() < nframes); scale_midi_velocity (ev, fabsf (gab[ev.time()])); } } } } const double a = 156.825 / _session.nominal_frame_rate(); // 25 Hz LPF; see Amp::apply_gain for details double lpf = _current_gain; for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const sp = i->data(); lpf = _current_gain; for (pframes_t nx = 0; nx < nframes; ++nx) { sp[nx] *= lpf; lpf += a * (gab[nx] - lpf); } } if (fabs (lpf) < GAIN_COEFF_TINY) { _current_gain = GAIN_COEFF_ZERO; } else { _current_gain = lpf; } } else { /* manual (scalar) gain */ gain_t const dg = _gain_control->get_value(); if (_current_gain != dg) { _current_gain = Amp::apply_gain (bufs, _session.nominal_frame_rate(), nframes, _current_gain, dg, _midi_amp); } else if (_current_gain != GAIN_COEFF_UNITY) { /* gain has not changed, but its non-unity */ if (_midi_amp) { /* don't Trim midi velocity -- only relevant for Midi on Audio tracks */ for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::Event ev = *m; if (ev.is_note_on()) { scale_midi_velocity (ev, fabsf (_current_gain)); } } } } for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { apply_gain_to_buffer (i->data(), nframes, _current_gain); } } } } _active = _pending_active; } gain_t Amp::apply_gain (BufferSet& bufs, framecnt_t sample_rate, framecnt_t nframes, gain_t initial, gain_t target, bool midi_amp) { /** Apply a (potentially) declicked gain to the buffers of @a bufs */ gain_t rv = target; if (nframes == 0 || bufs.count().n_total() == 0) { return initial; } // if we don't need to declick, defer to apply_simple_gain if (initial == target) { apply_simple_gain (bufs, nframes, target); return target; } /* MIDI Gain */ if (midi_amp) { /* don't Trim midi velocity -- only relevant for Midi on Audio tracks */ for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { gain_t delta; if (target < initial) { /* fade out: remove more and more of delta from initial */ delta = -(initial - target); } else { /* fade in: add more and more of delta from initial */ delta = target - initial; } MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::Event ev = *m; if (ev.is_note_on()) { const gain_t scale = delta * (ev.time()/(double) nframes); scale_midi_velocity (ev, fabsf (initial + scale)); } } } } /* Audio Gain */ /* Low pass filter coefficient: 1.0 - e^(-2.0 * π * f / 48000) f in Hz. * for f << SR, approx a ~= 6.2 * f / SR; */ const double a = 156.825 / sample_rate; // 25 Hz LPF for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const buffer = i->data(); double lpf = initial; for (pframes_t nx = 0; nx < nframes; ++nx) { buffer[nx] *= lpf; lpf += a * (target - lpf); } if (i == bufs.audio_begin()) { rv = lpf; } } if (fabsf (rv - target) < GAIN_COEFF_TINY) return target; if (fabsf (rv) < GAIN_COEFF_TINY) return GAIN_COEFF_ZERO; return rv; } void Amp::declick (BufferSet& bufs, framecnt_t nframes, int dir) { if (nframes == 0 || bufs.count().n_total() == 0) { return; } const framecnt_t declick = std::min ((framecnt_t) 512, nframes); const double fractional_shift = 1.0 / declick ; gain_t delta, initial; if (dir < 0) { /* fade out: remove more and more of delta from initial */ delta = -1.0; initial = GAIN_COEFF_UNITY; } else { /* fade in: add more and more of delta from initial */ delta = 1.0; initial = GAIN_COEFF_ZERO; } /* Audio Gain */ for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { Sample* const buffer = i->data(); double fractional_pos = 0.0; for (pframes_t nx = 0; nx < declick; ++nx) { buffer[nx] *= initial + (delta * fractional_pos); fractional_pos += fractional_shift; } /* now ensure the rest of the buffer has the target value applied, if necessary. */ if (declick != nframes) { if (dir < 0) { memset (&buffer[declick], 0, sizeof (Sample) * (nframes - declick)); } } } } gain_t Amp::apply_gain (AudioBuffer& buf, framecnt_t sample_rate, framecnt_t nframes, gain_t initial, gain_t target) { /* Apply a (potentially) declicked gain to the contents of @a buf * -- used by MonitorProcessor::run() */ if (nframes == 0) { return initial; } // if we don't need to declick, defer to apply_simple_gain if (initial == target) { apply_simple_gain (buf, nframes, target); return target; } Sample* const buffer = buf.data(); const double a = 156.825 / sample_rate; // 25 Hz LPF, see [other] Amp::apply_gain() above for details double lpf = initial; for (pframes_t nx = 0; nx < nframes; ++nx) { buffer[nx] *= lpf; lpf += a * (target - lpf); } if (fabs (lpf - target) < GAIN_COEFF_TINY) return target; if (fabs (lpf) < GAIN_COEFF_TINY) return GAIN_COEFF_ZERO; return lpf; } void Amp::apply_simple_gain (BufferSet& bufs, framecnt_t nframes, gain_t target, bool midi_amp) { if (fabsf (target) < GAIN_COEFF_SMALL) { if (midi_amp) { /* don't Trim midi velocity -- only relevant for Midi on Audio tracks */ for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::Event ev = *m; if (ev.is_note_on()) { ev.set_velocity (0); } } } } for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { memset (i->data(), 0, sizeof (Sample) * nframes); } } else if (target != GAIN_COEFF_UNITY) { if (midi_amp) { /* don't Trim midi velocity -- only relevant for Midi on Audio tracks */ for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) { MidiBuffer& mb (*i); for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) { Evoral::Event ev = *m; if (ev.is_note_on()) { scale_midi_velocity(ev, fabsf (target)); } } } } for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) { apply_gain_to_buffer (i->data(), nframes, target); } } } void Amp::apply_simple_gain (AudioBuffer& buf, framecnt_t nframes, gain_t target) { if (fabsf (target) < GAIN_COEFF_SMALL) { memset (buf.data(), 0, sizeof (Sample) * nframes); } else if (target != GAIN_COEFF_UNITY) { apply_gain_to_buffer (buf.data(), nframes, target); } } XMLNode& Amp::state (bool full_state) { XMLNode& node (Processor::state (full_state)); node.add_property("type", _gain_control->parameter().type() == GainAutomation ? "amp" : "trim"); node.add_child_nocopy (_gain_control->get_state()); return node; } int Amp::set_state (const XMLNode& node, int version) { XMLNode* gain_node; Processor::set_state (node, version); if ((gain_node = node.child (Controllable::xml_node_name.c_str())) != 0) { _gain_control->set_state (*gain_node, version); } return 0; } /** Write gain automation for this cycle into the buffer previously passed in to * set_gain_automation_buffer (if we are in automation playback mode and the * transport is rolling). */ void Amp::setup_gain_automation (framepos_t start_frame, framepos_t end_frame, framecnt_t nframes) { Glib::Threads::Mutex::Lock am (control_lock(), Glib::Threads::TRY_LOCK); if (am.locked() && (_session.transport_rolling() || _session.bounce_processing()) && _gain_control->automation_playback()) { assert (_gain_automation_buffer); _apply_gain_automation = _gain_control->list()->curve().rt_safe_get_vector ( start_frame, end_frame, _gain_automation_buffer, nframes); if (start_frame != _current_automation_frame && _session.bounce_processing ()) { _current_gain = _gain_automation_buffer[0]; } _current_automation_frame = end_frame; } else { _apply_gain_automation = false; _current_automation_frame = INT64_MAX; } } bool Amp::visible() const { return true; } std::string Amp::value_as_string (boost::shared_ptr ac) const { if (ac == _gain_control) { char buffer[32]; snprintf (buffer, sizeof (buffer), _("%.2fdB"), ac->internal_to_user (ac->get_value ())); return buffer; } return Automatable::value_as_string (ac); } /** Sets up the buffer that setup_gain_automation and ::run will use for * gain automationc curves. Must be called before setup_gain_automation, * and must be called with process lock held. */ void Amp::set_gain_automation_buffer (gain_t* g) { _gain_automation_buffer = g; }