/* Copyright: © Copyright 2005 Apple Computer, Inc. All rights reserved. Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in consideration of your agreement to the following terms, and your use, installation, modification or redistribution of this Apple software constitutes acceptance of these terms. If you do not agree with these terms, please do not use, install, modify or redistribute this Apple software. In consideration of your agreement to abide by the following terms, and subject to these terms, Apple grants you a personal, non-exclusive license, under AppleÕs copyrights in this original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the Apple Software, with or without modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in its entirety and without modifications, you must retain this notice and the following text and disclaimers in all such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to endorse or promote products derived from the Apple Software without specific prior written permission from Apple. Except as expressly stated in this notice, no other rights or licenses, express or implied, are granted by Apple herein, including but not limited to any patent rights that may be infringed by your derivative works or by other works in which the Apple Software may be incorporated. The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*============================================================================= CAAudioUnit.cpp =============================================================================*/ #include "CAAudioUnit.h" #if !defined(__COREAUDIO_USE_FLAT_INCLUDES__) #include #else #include #endif #include "CAReferenceCounted.h" #include "AUOutputBL.h" //this is for the Preroll only struct StackAUChannelInfo { StackAUChannelInfo (UInt32 inSize) : mChanInfo ((AUChannelInfo*)malloc (inSize)) {} ~StackAUChannelInfo() { free (mChanInfo); } AUChannelInfo* mChanInfo; }; class CAAudioUnit::AUState : public CAReferenceCounted { public: AUState (Component inComp) : mUnit(0), mNode (0) { OSStatus result = ::OpenAComponent (inComp, &mUnit); if (result) throw result; Init(); } AUState (const AUNode &inNode, const AudioUnit& inUnit) : mUnit (inUnit), mNode (inNode) { Init(); } ~AUState(); AudioUnit mUnit; AUNode mNode; OSStatus GetParameter(AudioUnitParameterID inID, AudioUnitScope scope, AudioUnitElement element, Float32 &outValue) const { if (mGetParamProc != NULL) { return reinterpret_cast(mGetParamProc) (mConnInstanceStorage, inID, scope, element, &outValue); } return AudioUnitGetParameter(mUnit, inID, scope, element, &outValue); } OSStatus SetParameter(AudioUnitParameterID inID, AudioUnitScope scope, AudioUnitElement element, Float32 value, UInt32 bufferOffsetFrames) { if (mSetParamProc != NULL) { return reinterpret_cast(mSetParamProc) (mConnInstanceStorage, inID, scope, element, value, bufferOffsetFrames); } return AudioUnitSetParameter(mUnit, inID, scope, element, value, bufferOffsetFrames); } OSStatus Render (AudioUnitRenderActionFlags * ioActionFlags, const AudioTimeStamp * inTimeStamp, UInt32 inOutputBusNumber, UInt32 inNumberFrames, AudioBufferList * ioData) { if (mRenderProc != NULL) { return reinterpret_cast(mRenderProc) (mConnInstanceStorage, ioActionFlags, inTimeStamp, inOutputBusNumber, inNumberFrames, ioData); } return AudioUnitRender(mUnit, ioActionFlags, inTimeStamp, inOutputBusNumber, inNumberFrames, ioData); } OSStatus MIDIEvent (UInt32 inStatus, UInt32 inData1, UInt32 inData2, UInt32 inOffsetSampleFrame) { #if !TARGET_OS_WIN32 if (mMIDIEventProc != NULL) { return reinterpret_cast(mMIDIEventProc) (mConnInstanceStorage, inStatus, inData1, inData2, inOffsetSampleFrame); } return MusicDeviceMIDIEvent (mUnit, inStatus, inData1, inData2, inOffsetSampleFrame); #else return paramErr; #endif } OSStatus StartNote (MusicDeviceInstrumentID inInstrument, MusicDeviceGroupID inGroupID, NoteInstanceID * outNoteInstanceID, UInt32 inOffsetSampleFrame, const MusicDeviceNoteParams * inParams) { #if !TARGET_OS_WIN32 return MusicDeviceStartNote (mUnit, inInstrument, inGroupID, outNoteInstanceID, inOffsetSampleFrame, inParams); #else return paramErr; #endif } OSStatus StopNote (MusicDeviceGroupID inGroupID, NoteInstanceID inNoteInstanceID, UInt32 inOffsetSampleFrame) { #if !TARGET_OS_WIN32 return MusicDeviceStopNote (mUnit, inGroupID, inNoteInstanceID, inOffsetSampleFrame); #else return paramErr; #endif } private: // get the fast dispatch pointers void Init() { UInt32 size = sizeof(AudioUnitRenderProc); if (AudioUnitGetProperty(mUnit, kAudioUnitProperty_FastDispatch, kAudioUnitScope_Global, kAudioUnitRenderSelect, &mRenderProc, &size) != noErr) mRenderProc = NULL; if (AudioUnitGetProperty(mUnit, kAudioUnitProperty_FastDispatch, kAudioUnitScope_Global, kAudioUnitGetParameterSelect, &mGetParamProc, &size) != noErr) mGetParamProc = NULL; if (AudioUnitGetProperty(mUnit, kAudioUnitProperty_FastDispatch, kAudioUnitScope_Global, kAudioUnitSetParameterSelect, &mSetParamProc, &size) != noErr) mSetParamProc = NULL; if (AudioUnitGetProperty(mUnit, kAudioUnitProperty_FastDispatch, kAudioUnitScope_Global, kMusicDeviceMIDIEventSelect, &mMIDIEventProc, &size) != noErr) mMIDIEventProc = NULL; if (mRenderProc || mGetParamProc || mSetParamProc || mMIDIEventProc) mConnInstanceStorage = GetComponentInstanceStorage(mUnit); else mConnInstanceStorage = NULL; } ProcPtr mRenderProc, mGetParamProc, mSetParamProc, mMIDIEventProc; void * mConnInstanceStorage; private: // get the compiler to tell us when we do a bad thing!!! AUState () {} AUState (const AUState& other) : CAReferenceCounted (other) {} AUState& operator= (const AUState&) { return *this; } }; CAAudioUnit::AUState::~AUState () { if (mUnit && (mNode == 0)) { ::CloseComponent (mUnit); } mNode = 0; mUnit = 0; } OSStatus CAAudioUnit::Open (const CAComponent& inComp, CAAudioUnit &outUnit) { try { outUnit = inComp; return noErr; } catch (OSStatus res) { return res; } catch (...) { return -1; } } CAAudioUnit::CAAudioUnit (const AudioUnit& inUnit) : mComp (inUnit), mDataPtr (new AUState (-1, inUnit)) { } CAAudioUnit::CAAudioUnit (const CAComponent& inComp) : mComp (inComp), mDataPtr (0) { mDataPtr = new AUState (mComp.Comp()); } CAAudioUnit::CAAudioUnit (const AUNode &inNode, const AudioUnit& inUnit) : mComp (inUnit), mDataPtr(new AUState (inNode, inUnit)) { } CAAudioUnit::~CAAudioUnit () { if (mDataPtr) { mDataPtr->release(); mDataPtr = NULL; } } CAAudioUnit& CAAudioUnit::operator= (const CAAudioUnit &a) { if (mDataPtr != a.mDataPtr) { if (mDataPtr) mDataPtr->release(); if ((mDataPtr = a.mDataPtr) != NULL) mDataPtr->retain(); mComp = a.mComp; } return *this; } bool CAAudioUnit::operator== (const CAAudioUnit& y) const { if (mDataPtr == y.mDataPtr) return true; AudioUnit au1 = mDataPtr ? mDataPtr->mUnit : 0; AudioUnit au2 = y.mDataPtr ? y.mDataPtr->mUnit : 0; return au1 == au2; } bool CAAudioUnit::operator== (const AudioUnit& y) const { if (!mDataPtr) return false; return mDataPtr->mUnit == y; } #pragma mark __State Management bool CAAudioUnit::IsValid () const { return mDataPtr ? mDataPtr->mUnit != 0 : false; } AudioUnit CAAudioUnit::AU() const { return mDataPtr ? mDataPtr->mUnit : 0; } AUNode CAAudioUnit::GetAUNode () const { return mDataPtr ? mDataPtr->mNode : 0; } #pragma mark __Format Handling bool CAAudioUnit::CanDo ( int inChannelsIn, int inChannelsOut) const { // this is the default assumption of an audio effect unit Boolean* isWritable = 0; UInt32 dataSize = 0; // lets see if the unit has any channel restrictions OSStatus result = AudioUnitGetPropertyInfo (AU(), kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, &dataSize, isWritable); //don't care if this is writable // if this property is NOT implemented an FX unit // is expected to deal with same channel valance in and out if (result) { if ((Comp().Desc().IsEffect() && (inChannelsIn == inChannelsOut)) || (Comp().Desc().IsOffline() && (inChannelsIn == inChannelsOut))) { return true; } else { // the au should either really tell us about this // or we will assume the worst return false; } } StackAUChannelInfo info (dataSize); result = GetProperty (kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, info.mChanInfo, &dataSize); if (result) { return false; } return ValidateChannelPair (inChannelsIn, inChannelsOut, info.mChanInfo, (dataSize / sizeof (AUChannelInfo))); } int CAAudioUnit::GetChannelInfo (AUChannelInfo** chaninfo, UInt32& cnt) { // this is the default assumption of an audio effect unit Boolean* isWritable = 0; UInt32 dataSize = 0; // lets see if the unit has any channel restrictions OSStatus result = AudioUnitGetPropertyInfo (AU(), kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, &dataSize, isWritable); //don't care if this is writable // if this property is NOT implemented an FX unit // is expected to deal with same channel valance in and out if (result) { if (Comp().Desc().IsEffect()) { return 1; } else if (Comp().Desc().IsGenerator() || Comp().Desc().IsMusicDevice()) { // directly query Bus Formats // Note that that these may refer to different subBusses // (eg. Kick, Snare,.. on a Drummachine) // eventually the Bus-Name for each configuration should be exposed // for the User to select.. UInt32 elCountIn, elCountOut; if (GetElementCount (kAudioUnitScope_Input, elCountIn)) return -1; if (GetElementCount (kAudioUnitScope_Output, elCountOut)) return -1; cnt = std::max(elCountIn, elCountOut); *chaninfo = (AUChannelInfo*) malloc (sizeof (AUChannelInfo) * cnt); for (unsigned int i = 0; i < elCountIn; ++i) { UInt32 numChans; if (NumberChannels (kAudioUnitScope_Input, i, numChans)) return -1; (*chaninfo)[i].inChannels = numChans; } for (unsigned int i = elCountIn; i < cnt; ++i) { (*chaninfo)[i].inChannels = 0; } for (unsigned int i = 0; i < elCountOut; ++i) { UInt32 numChans; if (NumberChannels (kAudioUnitScope_Output, i, numChans)) return -1; (*chaninfo)[i].outChannels = numChans; } for (unsigned int i = elCountOut; i < cnt; ++i) { (*chaninfo)[i].outChannels = 0; } return 0; } else { // the au should either really tell us about this // or we will assume the worst return -1; } } *chaninfo = (AUChannelInfo*) malloc (dataSize); cnt = dataSize / sizeof (AUChannelInfo); result = GetProperty (kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, *chaninfo, &dataSize); if (result) { return -1; } return 0; } bool CAAudioUnit::ValidateChannelPair (int inChannelsIn, int inChannelsOut, const AUChannelInfo * info, UInt32 numChanInfo) const { // we've the following cases (some combinations) to test here: /* >0 An explicit number of channels on either side 0 that side (generally input!) has no elements -1 wild card: -1,-1 any num channels as long as same channels on in and out -1,-2 any num channels channels on in and out - special meaning -2+ indicates total num channs AU can handle - elements configurable to any num channels, - element count in scope must be writable */ //now chan layout can contain -1 for either scope (ie. doesn't care) for (unsigned int i = 0; i < numChanInfo; ++i) { //less than zero on both sides - check for special attributes if ((info[i].inChannels < 0) && (info[i].outChannels < 0)) { // these are our wild card matches if (info[i].inChannels == -1 && info[i].outChannels == -1) { if (inChannelsOut == inChannelsIn) { return true; } } else if ((info[i].inChannels == -1 && info[i].outChannels == -2) || (info[i].inChannels == -2 && info[i].outChannels == -1)) { return true; } // these are our total num channels matches // element count MUST be writable else { bool outWrite = false; bool inWrite = false; IsElementCountWritable (kAudioUnitScope_Output, outWrite); IsElementCountWritable (kAudioUnitScope_Input, inWrite); if (inWrite && outWrite) { if ((inChannelsOut <= abs(info[i].outChannels)) && (inChannelsIn <= abs(info[i].inChannels))) { return true; } } } } // special meaning on input, specific num on output else if (info[i].inChannels < 0) { if (info[i].outChannels == inChannelsOut) { // can do any in channels if (info[i].inChannels == -1) { return true; } // total chans on input else { bool inWrite = false; IsElementCountWritable (kAudioUnitScope_Input, inWrite); if (inWrite && (inChannelsIn <= abs(info[i].inChannels))) { return true; } } } } // special meaning on output, specific num on input else if (info[i].outChannels < 0) { if (info[i].inChannels == inChannelsIn) { // can do any out channels if (info[i].outChannels == -1) { return true; } // total chans on output else { bool outWrite = false; IsElementCountWritable (kAudioUnitScope_Output, outWrite); if (outWrite && (inChannelsOut <= abs(info[i].outChannels))) { return true; } } } } // both chans in struct >= 0 - thus has to explicitly match else if ((info[i].inChannels == inChannelsIn) && (info[i].outChannels == inChannelsOut)) { return true; } // now check to see if a wild card on the args (inChannelsIn or inChannelsOut chans is zero) is found // tells us to match just one side of the scopes else if (inChannelsIn == 0) { if (info[i].outChannels == inChannelsOut) { return true; } } else if (inChannelsOut == 0) { if (info[i].inChannels == inChannelsIn) { return true; } } } return false; } bool CheckDynCount (SInt32 inTotalChans, const CAAUChanHelper &inHelper) { int totalChans = 0; for (unsigned int i = 0; i < inHelper.mNumEls; ++i) totalChans += inHelper.mChans[i]; return (totalChans <= inTotalChans); } bool CAAudioUnit::CheckOneSide (const CAAUChanHelper &inHelper, bool checkOutput, const AUChannelInfo *info, UInt32 numInfo) const { // now we can use the wildcard option (see above impl) to see if this matches for (unsigned int el = 0; el < inHelper.mNumEls; ++el) { bool testAlready = false; for (unsigned int i = 0; i < el; ++i) { if (inHelper.mChans[i] == inHelper.mChans[el]) { testAlready = true; break; } } if (!testAlready) { if (checkOutput) { if (!ValidateChannelPair (0, inHelper.mChans[el], info, numInfo)) return false; } else { if (!ValidateChannelPair (inHelper.mChans[el], 0, info, numInfo)) return false; } } } return true; } bool CAAudioUnit::CanDo (const CAAUChanHelper &inputs, const CAAUChanHelper &outputs) const { // first check our state // huh! if (inputs.mNumEls == 0 && outputs.mNumEls == 0) return false; UInt32 elCount; if (GetElementCount (kAudioUnitScope_Input, elCount)) { return false; } if (elCount != inputs.mNumEls) return false; if (GetElementCount (kAudioUnitScope_Output, elCount)) { return false; } if (elCount != outputs.mNumEls) return false; // (1) special cases (effects and sources (generators and instruments) only) UInt32 dataSize = 0; if (GetPropertyInfo (kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, &dataSize, NULL) != noErr) { if (Comp().Desc().IsEffect() || Comp().Desc().IsOffline()) { UInt32 numChan = outputs.mNumEls > 0 ? outputs.mChans[0] : inputs.mChans[0]; for (unsigned int in = 0; in < inputs.mNumEls; ++in) if (numChan != inputs.mChans[in]) return false; for (unsigned int out = 0; out < outputs.mNumEls; ++out) if (numChan != outputs.mChans[out]) return false; return true; } // in this case, all the channels have to match the current config if (Comp().Desc().IsGenerator() || Comp().Desc().IsMusicDevice()) { for (unsigned int in = 0; in < inputs.mNumEls; ++in) { UInt32 chan; if (NumberChannels (kAudioUnitScope_Input, in, chan)) return false; if (chan != UInt32(inputs.mChans[in])) return false; } for (unsigned int out = 0; out < outputs.mNumEls; ++out) { UInt32 chan; if (NumberChannels (kAudioUnitScope_Output, out, chan)) return false; if (chan != UInt32(outputs.mChans[out])) return false; } return true; } // if we get here we can't determine anything about channel capabilities return false; } StackAUChannelInfo info (dataSize); if (GetProperty (kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, info.mChanInfo, &dataSize) != noErr) { return false; } int numInfo = dataSize / sizeof(AUChannelInfo); // (2) Test for dynamic capability (or no elements on that scope) SInt32 dynInChans = 0; if (ValidateDynamicScope (kAudioUnitScope_Input, dynInChans, info.mChanInfo, numInfo)) { if (CheckDynCount (dynInChans, inputs) == false) return false; } SInt32 dynOutChans = 0; if (ValidateDynamicScope (kAudioUnitScope_Output, dynOutChans, info.mChanInfo, numInfo)) { if (CheckDynCount (dynOutChans, outputs) == false) return false; } if (dynOutChans && dynInChans) { return true; } // (3) Just need to test one side if (dynInChans || (inputs.mNumEls == 0)) { return CheckOneSide (outputs, true, info.mChanInfo, numInfo); } if (dynOutChans || (outputs.mNumEls == 0)) { return CheckOneSide (inputs, false, info.mChanInfo, numInfo); } // (4) - not a dynamic AU, has ins and outs, and has channel constraints so we test every possible pairing for (unsigned int in = 0; in < inputs.mNumEls; ++in) { bool testInAlready = false; for (unsigned int i = 0; i < in; ++i) { if (inputs.mChans[i] == inputs.mChans[in]) { testInAlready = true; break; } } if (!testInAlready) { for (unsigned int out = 0; out < outputs.mNumEls; ++out) { // try to save a little bit and not test the same pairing multiple times... bool testOutAlready = false; for (unsigned int i = 0; i < out; ++i) { if (outputs.mChans[i] == outputs.mChans[out]) { testOutAlready = true; break; } } if (!testOutAlready) { if (!ValidateChannelPair (inputs.mChans[in], outputs.mChans[out],info.mChanInfo, numInfo)) { return false; } } } } } return true; } bool CAAudioUnit::SupportsNumChannels () const { // this is the default assumption of an audio effect unit Boolean* isWritable = 0; UInt32 dataSize = 0; // lets see if the unit has any channel restrictions OSStatus result = AudioUnitGetPropertyInfo (AU(), kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, &dataSize, isWritable); //don't care if this is writable // if this property is NOT implemented an FX unit // is expected to deal with same channel valance in and out if (result) { if (Comp().Desc().IsEffect() || Comp().Desc().IsOffline()) return true; } return result == noErr; } bool CAAudioUnit::GetChannelLayouts (AudioUnitScope inScope, AudioUnitElement inEl, ChannelTagVector &outChannelVector) const { if (HasChannelLayouts (inScope, inEl) == false) return false; UInt32 dataSize; OSStatus result = AudioUnitGetPropertyInfo (AU(), kAudioUnitProperty_SupportedChannelLayoutTags, inScope, inEl, &dataSize, NULL); if (result == kAudioUnitErr_InvalidProperty) { // if we get here we can do layouts but we've got the speaker config property outChannelVector.erase (outChannelVector.begin(), outChannelVector.end()); outChannelVector.push_back (kAudioChannelLayoutTag_Stereo); outChannelVector.push_back (kAudioChannelLayoutTag_StereoHeadphones); outChannelVector.push_back (kAudioChannelLayoutTag_Quadraphonic); outChannelVector.push_back (kAudioChannelLayoutTag_AudioUnit_5_0); return true; } if (result) return false; bool canDo = false; // OK lets get our channel layouts and see if the one we want is present AudioChannelLayoutTag* info = (AudioChannelLayoutTag*)malloc (dataSize); result = AudioUnitGetProperty (AU(), kAudioUnitProperty_SupportedChannelLayoutTags, inScope, inEl, info, &dataSize); if (result) goto home; outChannelVector.erase (outChannelVector.begin(), outChannelVector.end()); for (unsigned int i = 0; i < (dataSize / sizeof (AudioChannelLayoutTag)); ++i) outChannelVector.push_back (info[i]); home: free (info); return canDo; } bool CAAudioUnit::HasChannelLayouts (AudioUnitScope inScope, AudioUnitElement inEl) const { OSStatus result = AudioUnitGetPropertyInfo (AU(), kAudioUnitProperty_SupportedChannelLayoutTags, inScope, inEl, NULL, NULL); return !result; } OSStatus CAAudioUnit::GetChannelLayout (AudioUnitScope inScope, AudioUnitElement inEl, CAAudioChannelLayout &outLayout) const { UInt32 size; OSStatus result = AudioUnitGetPropertyInfo (AU(), kAudioUnitProperty_AudioChannelLayout, inScope, inEl, &size, NULL); if (result) return result; AudioChannelLayout *layout = (AudioChannelLayout*)malloc (size); require_noerr (result = AudioUnitGetProperty (AU(), kAudioUnitProperty_AudioChannelLayout, inScope, inEl, layout, &size), home); outLayout = CAAudioChannelLayout (layout); home: free (layout); return result; } OSStatus CAAudioUnit::SetChannelLayout (AudioUnitScope inScope, AudioUnitElement inEl, CAAudioChannelLayout &inLayout) { OSStatus result = AudioUnitSetProperty (AU(), kAudioUnitProperty_AudioChannelLayout, inScope, inEl, inLayout, inLayout.Size()); return result; } OSStatus CAAudioUnit::SetChannelLayout (AudioUnitScope inScope, AudioUnitElement inEl, AudioChannelLayout &inLayout, UInt32 inSize) { OSStatus result = AudioUnitSetProperty (AU(), kAudioUnitProperty_AudioChannelLayout, inScope, inEl, &inLayout, inSize); return result; } OSStatus CAAudioUnit::ClearChannelLayout (AudioUnitScope inScope, AudioUnitElement inEl) { return AudioUnitSetProperty (AU(), kAudioUnitProperty_AudioChannelLayout, inScope, inEl, NULL, 0); } OSStatus CAAudioUnit::GetFormat (AudioUnitScope inScope, AudioUnitElement inEl, AudioStreamBasicDescription &outFormat) const { UInt32 dataSize = sizeof (AudioStreamBasicDescription); return AudioUnitGetProperty (AU(), kAudioUnitProperty_StreamFormat, inScope, inEl, &outFormat, &dataSize); } OSStatus CAAudioUnit::SetFormat (AudioUnitScope inScope, AudioUnitElement inEl, const AudioStreamBasicDescription &inFormat) { return AudioUnitSetProperty (AU(), kAudioUnitProperty_StreamFormat, inScope, inEl, const_cast(&inFormat), sizeof (AudioStreamBasicDescription)); } OSStatus CAAudioUnit::GetSampleRate (AudioUnitScope inScope, AudioUnitElement inEl, Float64 &outRate) const { UInt32 dataSize = sizeof (Float64); return AudioUnitGetProperty (AU(), kAudioUnitProperty_SampleRate, inScope, inEl, &outRate, &dataSize); } OSStatus CAAudioUnit::SetSampleRate (AudioUnitScope inScope, AudioUnitElement inEl, Float64 inRate) { AudioStreamBasicDescription desc; OSStatus result = GetFormat (inScope, inEl, desc); if (result) return result; desc.mSampleRate = inRate; return SetFormat (inScope, inEl, desc); } OSStatus CAAudioUnit::SetSampleRate (Float64 inSampleRate) { OSStatus result; UInt32 elCount; require_noerr (result = GetElementCount(kAudioUnitScope_Input, elCount), home); if (elCount) { for (unsigned int i = 0; i < elCount; ++i) { require_noerr (result = SetSampleRate (kAudioUnitScope_Input, i, inSampleRate), home); } } require_noerr (result = GetElementCount(kAudioUnitScope_Output, elCount), home); if (elCount) { for (unsigned int i = 0; i < elCount; ++i) { require_noerr (result = SetSampleRate (kAudioUnitScope_Output, i, inSampleRate), home); } } home: return result; } OSStatus CAAudioUnit::NumberChannels (AudioUnitScope inScope, AudioUnitElement inEl, UInt32 &outChans) const { AudioStreamBasicDescription desc; OSStatus result = GetFormat (inScope, inEl, desc); if (!result) outChans = desc.mChannelsPerFrame; return result; } OSStatus CAAudioUnit::SetNumberChannels (AudioUnitScope inScope, AudioUnitElement inEl, UInt32 inChans) { // set this as the output of the AU CAStreamBasicDescription desc; OSStatus result = GetFormat (inScope, inEl, desc); if (result) return result; desc.SetCanonical (inChans, desc.IsInterleaved()); result = SetFormat (inScope, inEl, desc); return result; } OSStatus CAAudioUnit::IsElementCountWritable (AudioUnitScope inScope, bool &outWritable) const { Boolean isWritable; UInt32 outDataSize; OSStatus result = GetPropertyInfo (kAudioUnitProperty_ElementCount, inScope, 0, &outDataSize, &isWritable); if (result) return result; outWritable = isWritable ? true : false; return noErr; } OSStatus CAAudioUnit::GetElementCount (AudioUnitScope inScope, UInt32 &outCount) const { UInt32 propSize = sizeof(outCount); return GetProperty (kAudioUnitProperty_ElementCount, inScope, 0, &outCount, &propSize); } OSStatus CAAudioUnit::SetElementCount (AudioUnitScope inScope, UInt32 inCount) { return SetProperty (kAudioUnitProperty_ElementCount, inScope, 0, &inCount, sizeof(inCount)); } bool CAAudioUnit::HasDynamicScope (AudioUnitScope inScope, SInt32 &outTotalNumChannels) const { // ok - now we need to check the AU's capability here. // this is the default assumption of an audio effect unit Boolean* isWritable = 0; UInt32 dataSize = 0; OSStatus result = GetPropertyInfo (kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, &dataSize, isWritable); //don't care if this is writable // AU has to explicitly tell us about this. if (result) return false; StackAUChannelInfo info (dataSize); result = GetProperty (kAudioUnitProperty_SupportedNumChannels, kAudioUnitScope_Global, 0, info.mChanInfo, &dataSize); if (result) return false; return ValidateDynamicScope (inScope, outTotalNumChannels, info.mChanInfo, (dataSize / sizeof(AUChannelInfo))); } // as we've already checked that the element count is writable // the following conditions will match this.. /* -1, -2 -> signifies no restrictions -2, -1 -> signifies no restrictions -> in this case outTotalNumChannels == -1 (any num channels) -N (where N is less than -2), signifies the total channel count on the scope side (in or out) */ bool CAAudioUnit::ValidateDynamicScope (AudioUnitScope inScope, SInt32 &outTotalNumChannels, const AUChannelInfo *info, UInt32 numInfo) const { bool writable = false; OSStatus result = IsElementCountWritable (inScope, writable); if (result || (writable == false)) return false; //now chan layout can contain -1 for either scope (ie. doesn't care) for (unsigned int i = 0; i < numInfo; ++i) { // lets test the special wild card case first... // this says the AU can do any num channels on input or output - for eg. Matrix Mixer if (((info[i].inChannels == -1) && (info[i].outChannels == -2)) || ((info[i].inChannels == -2) && (info[i].outChannels == -1))) { outTotalNumChannels = -1; return true; } // ok lets now test our special case.... if (inScope == kAudioUnitScope_Input) { // isn't dynamic on this side at least if (info[i].inChannels >= 0) continue; if (info[i].inChannels < -2) { outTotalNumChannels = abs (info[i].inChannels); return true; } } else if (inScope == kAudioUnitScope_Output) { // isn't dynamic on this side at least if (info[i].outChannels >= 0) continue; if (info[i].outChannels < -2) { outTotalNumChannels = abs (info[i].outChannels); return true; } } else { break; // wrong scope was specified } } return false; } OSStatus CAAudioUnit::ConfigureDynamicScope (AudioUnitScope inScope, UInt32 inNumElements, UInt32 *inChannelsPerElement, Float64 inSampleRate) { SInt32 numChannels = 0; bool isDyamic = HasDynamicScope (inScope, numChannels); if (isDyamic == false) return kAudioUnitErr_InvalidProperty; //lets to a sanity check... // if numChannels == -1, then it can do "any"... if (numChannels > 0) { SInt32 count = 0; for (unsigned int i = 0; i < inNumElements; ++i) count += inChannelsPerElement[i]; if (count > numChannels) return kAudioUnitErr_InvalidPropertyValue; } OSStatus result = SetElementCount (inScope, inNumElements); if (result) return result; CAStreamBasicDescription desc; desc.mSampleRate = inSampleRate; for (unsigned int i = 0; i < inNumElements; ++i) { desc.SetCanonical (inChannelsPerElement[i], false); result = SetFormat (inScope, i, desc); if (result) return result; } return noErr; } #pragma mark __Properties bool CAAudioUnit::CanBypass () const { Boolean outWritable; OSStatus result = AudioUnitGetPropertyInfo (AU(), kAudioUnitProperty_BypassEffect, kAudioUnitScope_Global, 0, NULL, &outWritable); return (!result && outWritable); } bool CAAudioUnit::GetBypass () const { UInt32 dataSize = sizeof (UInt32); UInt32 outBypass; OSStatus result = AudioUnitGetProperty (AU(), kAudioUnitProperty_BypassEffect, kAudioUnitScope_Global, 0, &outBypass, &dataSize); return (result ? false : outBypass); } OSStatus CAAudioUnit::SetBypass (bool inBypass) const { UInt32 bypass = inBypass ? 1 : 0; return AudioUnitSetProperty (AU(), kAudioUnitProperty_BypassEffect, kAudioUnitScope_Global, 0, &bypass, sizeof (UInt32)); } Float64 CAAudioUnit::Latency () const { Float64 secs; UInt32 size = sizeof(secs); if (GetProperty (kAudioUnitProperty_Latency, kAudioUnitScope_Global, 0, &secs, &size)) return 0; return secs; } OSStatus CAAudioUnit::GetAUPreset (CFPropertyListRef &outData) const { UInt32 dataSize = sizeof(outData); return AudioUnitGetProperty (AU(), kAudioUnitProperty_ClassInfo, kAudioUnitScope_Global, 0, &outData, &dataSize); } OSStatus CAAudioUnit::SetAUPreset (CFPropertyListRef &inData) { return AudioUnitSetProperty (AU(), kAudioUnitProperty_ClassInfo, kAudioUnitScope_Global, 0, &inData, sizeof (CFPropertyListRef)); } OSStatus CAAudioUnit::GetPresentPreset (AUPreset &outData) const { UInt32 dataSize = sizeof(outData); OSStatus result = AudioUnitGetProperty (AU(), kAudioUnitProperty_PresentPreset, kAudioUnitScope_Global, 0, &outData, &dataSize); if (result == kAudioUnitErr_InvalidProperty) { dataSize = sizeof(outData); result = AudioUnitGetProperty (AU(), kAudioUnitProperty_CurrentPreset, kAudioUnitScope_Global, 0, &outData, &dataSize); if (result == noErr) { // we now retain the CFString in the preset so for the client of this API // it is consistent (ie. the string should be released when done) if (outData.presetName) CFRetain (outData.presetName); } } return result; } OSStatus CAAudioUnit::SetPresentPreset (AUPreset &inData) { OSStatus result = AudioUnitSetProperty (AU(), kAudioUnitProperty_PresentPreset, kAudioUnitScope_Global, 0, &inData, sizeof (AUPreset)); if (result == kAudioUnitErr_InvalidProperty) { result = AudioUnitSetProperty (AU(), kAudioUnitProperty_CurrentPreset, kAudioUnitScope_Global, 0, &inData, sizeof (AUPreset)); } return result; } bool CAAudioUnit::HasCustomView () const { UInt32 dataSize = 0; OSStatus result = GetPropertyInfo(kAudioUnitProperty_GetUIComponentList, kAudioUnitScope_Global, 0, &dataSize, NULL); if (result || !dataSize) { dataSize = 0; result = GetPropertyInfo(kAudioUnitProperty_CocoaUI, kAudioUnitScope_Global, 0, &dataSize, NULL); if (result || !dataSize) return false; } return true; } OSStatus CAAudioUnit::GetParameter(AudioUnitParameterID inID, AudioUnitScope scope, AudioUnitElement element, Float32 &outValue) const { return mDataPtr ? (OSStatus) mDataPtr->GetParameter (inID, scope, element, outValue) : paramErr; } OSStatus CAAudioUnit::SetParameter(AudioUnitParameterID inID, AudioUnitScope scope, AudioUnitElement element, Float32 value, UInt32 bufferOffsetFrames) { return mDataPtr ? (OSStatus) mDataPtr->SetParameter (inID, scope, element, value, bufferOffsetFrames) : paramErr; } OSStatus CAAudioUnit::MIDIEvent (UInt32 inStatus, UInt32 inData1, UInt32 inData2, UInt32 inOffsetSampleFrame) { return mDataPtr ? (OSStatus) mDataPtr->MIDIEvent (inStatus, inData1, inData2, inOffsetSampleFrame) : paramErr; } OSStatus CAAudioUnit::StartNote (MusicDeviceInstrumentID inInstrument, MusicDeviceGroupID inGroupID, NoteInstanceID * outNoteInstanceID, UInt32 inOffsetSampleFrame, const MusicDeviceNoteParams * inParams) { return mDataPtr ? (OSStatus) mDataPtr->StartNote (inInstrument, inGroupID, outNoteInstanceID, inOffsetSampleFrame, inParams) : paramErr; } OSStatus CAAudioUnit::StopNote (MusicDeviceGroupID inGroupID, NoteInstanceID inNoteInstanceID, UInt32 inOffsetSampleFrame) { return mDataPtr ? (OSStatus) mDataPtr->StopNote (inGroupID, inNoteInstanceID, inOffsetSampleFrame) : paramErr; } #pragma mark __Render OSStatus CAAudioUnit::Render (AudioUnitRenderActionFlags * ioActionFlags, const AudioTimeStamp * inTimeStamp, UInt32 inOutputBusNumber, UInt32 inNumberFrames, AudioBufferList * ioData) { return mDataPtr ? (OSStatus) mDataPtr->Render (ioActionFlags, inTimeStamp, inOutputBusNumber, inNumberFrames, ioData) : paramErr; } static AURenderCallbackStruct sRenderCallback; static OSStatus PrerollRenderProc ( void * /*inRefCon*/, AudioUnitRenderActionFlags * /*inActionFlags*/, const AudioTimeStamp * /*inTimeStamp*/, UInt32 /*inBusNumber*/, UInt32 /*inNumFrames*/, AudioBufferList *ioData) { AudioBuffer *buf = ioData->mBuffers; for (UInt32 i = ioData->mNumberBuffers; i--; ++buf) memset((Byte *)buf->mData, 0, buf->mDataByteSize); return noErr; } OSStatus CAAudioUnit::Preroll (UInt32 inFrameSize) { CAStreamBasicDescription desc; OSStatus result = GetFormat (kAudioUnitScope_Input, 0, desc); bool hasInput = false; //we have input if (result == noErr) { sRenderCallback.inputProc = PrerollRenderProc; sRenderCallback.inputProcRefCon = 0; result = SetProperty (kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input, 0, &sRenderCallback, sizeof(sRenderCallback)); if (result) return result; hasInput = true; } AudioUnitRenderActionFlags flags = 0; AudioTimeStamp time; memset (&time, 0, sizeof(time)); time.mFlags = kAudioTimeStampSampleTimeValid; CAStreamBasicDescription outputFormat; require_noerr (result = GetFormat (kAudioUnitScope_Output, 0, outputFormat), home); { AUOutputBL list (outputFormat, inFrameSize); list.Prepare (); require_noerr (result = Render (&flags, &time, 0, inFrameSize, list.ABL()), home); require_noerr (result = GlobalReset(), home); } home: if (hasInput) { // remove our installed callback sRenderCallback.inputProc = 0; sRenderCallback.inputProcRefCon = 0; SetProperty (kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input, 0, &sRenderCallback, sizeof(sRenderCallback)); } return result; } #pragma mark __CAAUChanHelper CAAUChanHelper::CAAUChanHelper(const CAAudioUnit &inAU, AudioUnitScope inScope) :mChans(NULL), mNumEls(0), mDidAllocate(false) { UInt32 elCount; if (inAU.GetElementCount (inScope, elCount)) return; if (elCount > 8) { mChans = new UInt32[elCount]; mDidAllocate = true; memset (mChans, 0, sizeof(int) * elCount); } else { mChans = mStaticChans; memset (mChans, 0, sizeof(int) * 8); } for (unsigned int i = 0; i < elCount; ++i) { UInt32 numChans; if (inAU.NumberChannels (inScope, i, numChans)) return; mChans[i] = numChans; } mNumEls = elCount; } CAAUChanHelper::~CAAUChanHelper() { if (mDidAllocate) delete [] mChans; } CAAUChanHelper& CAAUChanHelper::operator= (const CAAUChanHelper &c) { if (mDidAllocate) delete [] mChans; if (c.mDidAllocate) { mChans = new UInt32[c.mNumEls]; mDidAllocate = true; } else { mDidAllocate = false; mChans = mStaticChans; } memcpy (mChans, c.mChans, c.mNumEls * sizeof(int)); return *this; } #pragma mark __Print Utilities void CAAudioUnit::Print (FILE* file) const { fprintf (file, "AudioUnit:%p\n", AU()); if (IsValid()) { fprintf (file, "\tnode=%ld\t", (long)GetAUNode()); Comp().Print (file); } }