/* File: CAVolumeCurve.cpp Abstract: CAVolumeCurve.h Version: 1.1 Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple") in consideration of your agreement to the following terms, and your use, installation, modification or redistribution of this Apple software constitutes acceptance of these terms. If you do not agree with these terms, please do not use, install, modify or redistribute this Apple software. In consideration of your agreement to abide by the following terms, and subject to these terms, Apple grants you a personal, non-exclusive license, under Apple's copyrights in this original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the Apple Software, with or without modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in its entirety and without modifications, you must retain this notice and the following text and disclaimers in all such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos of Apple Inc. may be used to endorse or promote products derived from the Apple Software without specific prior written permission from Apple. Except as expressly stated in this notice, no other rights or licenses, express or implied, are granted by Apple herein, including but not limited to any patent rights that may be infringed by your derivative works or by other works in which the Apple Software may be incorporated. The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Copyright (C) 2014 Apple Inc. All Rights Reserved. */ //============================================================================= // Includes //============================================================================= #include "CAVolumeCurve.h" #include "CADebugMacros.h" #include //============================================================================= // CAVolumeCurve //============================================================================= CAVolumeCurve::CAVolumeCurve() : mTag(0), mCurveMap(), mIsApplyingTransferFunction(true), mTransferFunction(kPow2Over1Curve), mRawToScalarExponentNumerator(2.0f), mRawToScalarExponentDenominator(1.0f) { } CAVolumeCurve::~CAVolumeCurve() { } SInt32 CAVolumeCurve::GetMinimumRaw() const { SInt32 theAnswer = 0; if(!mCurveMap.empty()) { CurveMap::const_iterator theIterator = mCurveMap.begin(); theAnswer = theIterator->first.mMinimum; } return theAnswer; } SInt32 CAVolumeCurve::GetMaximumRaw() const { SInt32 theAnswer = 0; if(!mCurveMap.empty()) { CurveMap::const_iterator theIterator = mCurveMap.begin(); std::advance(theIterator, static_cast(mCurveMap.size() - 1)); theAnswer = theIterator->first.mMaximum; } return theAnswer; } Float32 CAVolumeCurve::GetMinimumDB() const { Float32 theAnswer = 0; if(!mCurveMap.empty()) { CurveMap::const_iterator theIterator = mCurveMap.begin(); theAnswer = theIterator->second.mMinimum; } return theAnswer; } Float32 CAVolumeCurve::GetMaximumDB() const { Float32 theAnswer = 0; if(!mCurveMap.empty()) { CurveMap::const_iterator theIterator = mCurveMap.begin(); std::advance(theIterator, static_cast(mCurveMap.size() - 1)); theAnswer = theIterator->second.mMaximum; } return theAnswer; } void CAVolumeCurve::SetTransferFunction(UInt32 inTransferFunction) { mTransferFunction = inTransferFunction; // figure out the co-efficients switch(inTransferFunction) { case kLinearCurve: mIsApplyingTransferFunction = false; mRawToScalarExponentNumerator = 1.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow1Over3Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 1.0f; mRawToScalarExponentDenominator = 3.0f; break; case kPow1Over2Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 1.0f; mRawToScalarExponentDenominator = 2.0f; break; case kPow3Over4Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 3.0f; mRawToScalarExponentDenominator = 4.0f; break; case kPow3Over2Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 3.0f; mRawToScalarExponentDenominator = 2.0f; break; case kPow2Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 2.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow3Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 3.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow4Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 4.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow5Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 5.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow6Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 6.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow7Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 7.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow8Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 8.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow9Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 9.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow10Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 10.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow11Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 11.0f; mRawToScalarExponentDenominator = 1.0f; break; case kPow12Over1Curve: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 12.0f; mRawToScalarExponentDenominator = 1.0f; break; default: mIsApplyingTransferFunction = true; mRawToScalarExponentNumerator = 2.0f; mRawToScalarExponentDenominator = 1.0f; break; }; } void CAVolumeCurve::AddRange(SInt32 inMinRaw, SInt32 inMaxRaw, Float32 inMinDB, Float32 inMaxDB) { CARawPoint theRaw(inMinRaw, inMaxRaw); CADBPoint theDB(inMinDB, inMaxDB); bool isOverlapped = false; bool isDone = false; CurveMap::iterator theIterator = mCurveMap.begin(); while((theIterator != mCurveMap.end()) && !isOverlapped && !isDone) { isOverlapped = CARawPoint::Overlap(theRaw, theIterator->first); isDone = theRaw >= theIterator->first; if(!isOverlapped && !isDone) { std::advance(theIterator, 1); } } if(!isOverlapped) { mCurveMap.insert(CurveMap::value_type(theRaw, theDB)); } else { DebugMessage("CAVolumeCurve::AddRange: new point overlaps"); } } void CAVolumeCurve::ResetRange() { mCurveMap.clear(); } bool CAVolumeCurve::CheckForContinuity() const { bool theAnswer = true; CurveMap::const_iterator theIterator = mCurveMap.begin(); if(theIterator != mCurveMap.end()) { SInt32 theRaw = theIterator->first.mMinimum; Float32 theDB = theIterator->second.mMinimum; do { SInt32 theRawMin = theIterator->first.mMinimum; SInt32 theRawMax = theIterator->first.mMaximum; SInt32 theRawRange = theRawMax - theRawMin; Float32 theDBMin = theIterator->second.mMinimum; Float32 theDBMax = theIterator->second.mMaximum; Float32 theDBRange = theDBMax - theDBMin; theAnswer = theRaw == theRawMin; theAnswer = theAnswer && (theDB == theDBMin); theRaw += theRawRange; theDB += theDBRange; std::advance(theIterator, 1); } while((theIterator != mCurveMap.end()) && theAnswer); } return theAnswer; } SInt32 CAVolumeCurve::ConvertDBToRaw(Float32 inDB) const { // clamp the value to the dB range Float32 theOverallDBMin = GetMinimumDB(); Float32 theOverallDBMax = GetMaximumDB(); if(inDB < theOverallDBMin) inDB = theOverallDBMin; if(inDB > theOverallDBMax) inDB = theOverallDBMax; // get the first entry in the curve map; CurveMap::const_iterator theIterator = mCurveMap.begin(); // initialize the answer to the minimum raw of the first item in the curve map SInt32 theAnswer = theIterator->first.mMinimum; // iterate through the curve map until we run out of dB bool isDone = false; while(!isDone && (theIterator != mCurveMap.end())) { SInt32 theRawMin = theIterator->first.mMinimum; SInt32 theRawMax = theIterator->first.mMaximum; SInt32 theRawRange = theRawMax - theRawMin; Float32 theDBMin = theIterator->second.mMinimum; Float32 theDBMax = theIterator->second.mMaximum; Float32 theDBRange = theDBMax - theDBMin; Float32 theDBPerRaw = theDBRange / static_cast(theRawRange); // figure out how many steps we are into this entry in the curve map if(inDB > theDBMax) { // we're past the end of this one, so add in the whole range for this entry theAnswer += theRawRange; } else { // it's somewhere within the current entry // figure out how many steps it is Float32 theNumberRawSteps = inDB - theDBMin; theNumberRawSteps /= theDBPerRaw; // only move in whole steps theNumberRawSteps = roundf(theNumberRawSteps); // add this many steps to the answer theAnswer += static_cast(theNumberRawSteps); // mark that we are done isDone = true; } // go to the next entry in the curve map std::advance(theIterator, 1); } return theAnswer; } Float32 CAVolumeCurve::ConvertRawToDB(SInt32 inRaw) const { Float32 theAnswer = 0; // clamp the raw value SInt32 theOverallRawMin = GetMinimumRaw(); SInt32 theOverallRawMax = GetMaximumRaw(); if(inRaw < theOverallRawMin) inRaw = theOverallRawMin; if(inRaw > theOverallRawMax) inRaw = theOverallRawMax; // figure out how many raw steps need to be taken from the first one SInt32 theNumberRawSteps = inRaw - theOverallRawMin; // get the first item in the curve map CurveMap::const_iterator theIterator = mCurveMap.begin(); // initialize the answer to the minimum dB of the first item in the curve map theAnswer = theIterator->second.mMinimum; // iterate through the curve map until we run out of steps while((theNumberRawSteps > 0) && (theIterator != mCurveMap.end())) { // compute some values SInt32 theRawMin = theIterator->first.mMinimum; SInt32 theRawMax = theIterator->first.mMaximum; SInt32 theRawRange = theRawMax - theRawMin; Float32 theDBMin = theIterator->second.mMinimum; Float32 theDBMax = theIterator->second.mMaximum; Float32 theDBRange = theDBMax - theDBMin; Float32 theDBPerRaw = theDBRange / static_cast(theRawRange); // there might be more steps than the current map entry accounts for SInt32 theRawStepsToAdd = std::min(theRawRange, theNumberRawSteps); // add this many steps worth of db to the answer; theAnswer += theRawStepsToAdd * theDBPerRaw; // figure out how many steps are left theNumberRawSteps -= theRawStepsToAdd; // go to the next map entry std::advance(theIterator, 1); } return theAnswer; } Float32 CAVolumeCurve::ConvertRawToScalar(SInt32 inRaw) const { // get some important values Float32 theDBMin = GetMinimumDB(); Float32 theDBMax = GetMaximumDB(); Float32 theDBRange = theDBMax - theDBMin; SInt32 theRawMin = GetMinimumRaw(); SInt32 theRawMax = GetMaximumRaw(); SInt32 theRawRange = theRawMax - theRawMin; // range the raw value if(inRaw < theRawMin) inRaw = theRawMin; if(inRaw > theRawMax) inRaw = theRawMax; // calculate the distance in the range inRaw is Float32 theAnswer = static_cast(inRaw - theRawMin) / static_cast(theRawRange); // only apply a curve to the scalar values if the dB range is greater than 30 if(mIsApplyingTransferFunction && (theDBRange > 30.0f)) { theAnswer = powf(theAnswer, mRawToScalarExponentNumerator / mRawToScalarExponentDenominator); } return theAnswer; } Float32 CAVolumeCurve::ConvertDBToScalar(Float32 inDB) const { SInt32 theRawValue = ConvertDBToRaw(inDB); Float32 theAnswer = ConvertRawToScalar(theRawValue); return theAnswer; } SInt32 CAVolumeCurve::ConvertScalarToRaw(Float32 inScalar) const { // range the scalar value inScalar = std::min(1.0f, std::max(0.0f, inScalar)); // get some important values Float32 theDBMin = GetMinimumDB(); Float32 theDBMax = GetMaximumDB(); Float32 theDBRange = theDBMax - theDBMin; SInt32 theRawMin = GetMinimumRaw(); SInt32 theRawMax = GetMaximumRaw(); SInt32 theRawRange = theRawMax - theRawMin; // have to undo the curve if the dB range is greater than 30 if(mIsApplyingTransferFunction && (theDBRange > 30.0f)) { inScalar = powf(inScalar, mRawToScalarExponentDenominator / mRawToScalarExponentNumerator); } // now we can figure out how many raw steps this is Float32 theNumberRawSteps = inScalar * static_cast(theRawRange); theNumberRawSteps = roundf(theNumberRawSteps); // the answer is the minimum raw value plus the number of raw steps SInt32 theAnswer = theRawMin + static_cast(theNumberRawSteps); return theAnswer; } Float32 CAVolumeCurve::ConvertScalarToDB(Float32 inScalar) const { SInt32 theRawValue = ConvertScalarToRaw(inScalar); Float32 theAnswer = ConvertRawToDB(theRawValue); return theAnswer; }