/* File: AUScopeElement.cpp Abstract: AUScopeElement.h Version: 1.1 Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple") in consideration of your agreement to the following terms, and your use, installation, modification or redistribution of this Apple software constitutes acceptance of these terms. If you do not agree with these terms, please do not use, install, modify or redistribute this Apple software. In consideration of your agreement to abide by the following terms, and subject to these terms, Apple grants you a personal, non-exclusive license, under Apple's copyrights in this original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the Apple Software, with or without modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in its entirety and without modifications, you must retain this notice and the following text and disclaimers in all such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos of Apple Inc. may be used to endorse or promote products derived from the Apple Software without specific prior written permission from Apple. Except as expressly stated in this notice, no other rights or licenses, express or implied, are granted by Apple herein, including but not limited to any patent rights that may be infringed by your derivative works or by other works in which the Apple Software may be incorporated. The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Copyright (C) 2014 Apple Inc. All Rights Reserved. */ #include "AUScopeElement.h" #include "AUBase.h" //_____________________________________________________________________________ // // By default, parameterIDs may be arbitrarily spaced, and an STL map // will be used for access. Calling UseIndexedParameters() will // instead use an STL vector for faster indexed access. // This assumes the paramIDs are numbered 0.....inNumberOfParameters-1 // Call this before defining/adding any parameters with SetParameter() // void AUElement::UseIndexedParameters(int inNumberOfParameters) { mIndexedParameters.resize (inNumberOfParameters); mUseIndexedParameters = true; } //_____________________________________________________________________________ // // Helper method. // returns the ParameterMapEvent object associated with the paramID // inline ParameterMapEvent& AUElement::GetParamEvent(AudioUnitParameterID paramID) { ParameterMapEvent *event; if(mUseIndexedParameters) { if(paramID >= mIndexedParameters.size() ) COMPONENT_THROW(kAudioUnitErr_InvalidParameter); event = &mIndexedParameters[paramID]; } else { ParameterMap::iterator i = mParameters.find(paramID); if (i == mParameters.end()) COMPONENT_THROW(kAudioUnitErr_InvalidParameter); event = &(*i).second; } return *event; } //_____________________________________________________________________________ // // Helper method. // returns whether the specified paramID is known to the element // bool AUElement::HasParameterID (AudioUnitParameterID paramID) const { if(mUseIndexedParameters) { if(paramID >= mIndexedParameters.size() ) return false; return true; } ParameterMap::const_iterator i = mParameters.find(paramID); if (i == mParameters.end()) return false; return true; } //_____________________________________________________________________________ // // caller assumes that this is actually an immediate parameter // AudioUnitParameterValue AUElement::GetParameter(AudioUnitParameterID paramID) { ParameterMapEvent &event = GetParamEvent(paramID); return event.GetValue(); } //_____________________________________________________________________________ // void AUElement::GetRampSliceStartEnd( AudioUnitParameterID paramID, AudioUnitParameterValue & outStartValue, AudioUnitParameterValue & outEndValue, AudioUnitParameterValue & outValuePerFrameDelta ) { ParameterMapEvent &event = GetParamEvent(paramID); // works even if the value is constant (immediate parameter value) event.GetRampSliceStartEnd(outStartValue, outEndValue, outValuePerFrameDelta ); } //_____________________________________________________________________________ // AudioUnitParameterValue AUElement::GetEndValue( AudioUnitParameterID paramID) { ParameterMapEvent &event = GetParamEvent(paramID); // works even if the value is constant (immediate parameter value) return event.GetEndValue(); } //_____________________________________________________________________________ // void AUElement::SetParameter(AudioUnitParameterID paramID, AudioUnitParameterValue inValue, bool okWhenInitialized) { if(mUseIndexedParameters) { ParameterMapEvent &event = GetParamEvent(paramID); event.SetValue(inValue); } else { ParameterMap::iterator i = mParameters.find(paramID); if (i == mParameters.end()) { if (mAudioUnit->IsInitialized() && !okWhenInitialized) { // The AU should not be creating new parameters once initialized. // If a client tries to set an undefined parameter, we could throw as follows, // but this might cause a regression. So it is better to just fail silently. // COMPONENT_THROW(kAudioUnitErr_InvalidParameter); #if DEBUG fprintf(stderr, "WARNING: %s SetParameter for undefined param ID %d while initialized. Ignoring..\n", mAudioUnit->GetLoggingString(), (int)paramID); #endif } else { // create new entry in map for the paramID (only happens first time) ParameterMapEvent event(inValue); mParameters[paramID] = event; } } else { // paramID already exists in map so simply change its value ParameterMapEvent &event = (*i).second; event.SetValue(inValue); } } } //_____________________________________________________________________________ // void AUElement::SetScheduledEvent( AudioUnitParameterID paramID, const AudioUnitParameterEvent &inEvent, UInt32 inSliceOffsetInBuffer, UInt32 inSliceDurationFrames, bool okWhenInitialized ) { if(mUseIndexedParameters) { ParameterMapEvent &event = GetParamEvent(paramID); event.SetScheduledEvent(inEvent, inSliceOffsetInBuffer, inSliceDurationFrames ); } else { ParameterMap::iterator i = mParameters.find(paramID); if (i == mParameters.end()) { if (mAudioUnit->IsInitialized() && !okWhenInitialized) { // The AU should not be creating new parameters once initialized. // If a client tries to set an undefined parameter, we could throw as follows, // but this might cause a regression. So it is better to just fail silently. // COMPONENT_THROW(kAudioUnitErr_InvalidParameter); #if DEBUG fprintf(stderr, "WARNING: %s SetScheduledEvent for undefined param ID %d while initialized. Ignoring..\n", mAudioUnit->GetLoggingString(), (int)paramID); #endif } else { // create new entry in map for the paramID (only happens first time) ParameterMapEvent event(inEvent, inSliceOffsetInBuffer, inSliceDurationFrames); mParameters[paramID] = event; } } else { // paramID already exists in map so simply change its value ParameterMapEvent &event = (*i).second; event.SetScheduledEvent(inEvent, inSliceOffsetInBuffer, inSliceDurationFrames ); } } } //_____________________________________________________________________________ // void AUElement::GetParameterList(AudioUnitParameterID *outList) { if(mUseIndexedParameters) { UInt32 nparams = static_cast(mIndexedParameters.size()); for (UInt32 i = 0; i < nparams; i++ ) *outList++ = (AudioUnitParameterID)i; } else { for (ParameterMap::iterator i = mParameters.begin(); i != mParameters.end(); ++i) *outList++ = (*i).first; } } //_____________________________________________________________________________ // void AUElement::SaveState(CFMutableDataRef data) { if(mUseIndexedParameters) { UInt32 nparams = static_cast(mIndexedParameters.size()); UInt32 theData = CFSwapInt32HostToBig(nparams); CFDataAppendBytes(data, (UInt8 *)&theData, sizeof(nparams)); for (UInt32 i = 0; i < nparams; i++) { struct { UInt32 paramID; //CFSwappedFloat32 value; crashes gcc3 PFE UInt32 value; // really a big-endian float } entry; entry.paramID = CFSwapInt32HostToBig(i); AudioUnitParameterValue v = mIndexedParameters[i].GetValue(); entry.value = CFSwapInt32HostToBig(*(UInt32 *)&v ); CFDataAppendBytes(data, (UInt8 *)&entry, sizeof(entry)); } } else { UInt32 nparams = CFSwapInt32HostToBig(static_cast(mParameters.size())); CFDataAppendBytes(data, (UInt8 *)&nparams, sizeof(nparams)); for (ParameterMap::iterator i = mParameters.begin(); i != mParameters.end(); ++i) { struct { UInt32 paramID; //CFSwappedFloat32 value; crashes gcc3 PFE UInt32 value; // really a big-endian float } entry; entry.paramID = CFSwapInt32HostToBig((*i).first); AudioUnitParameterValue v = (*i).second.GetValue(); entry.value = CFSwapInt32HostToBig(*(UInt32 *)&v ); CFDataAppendBytes(data, (UInt8 *)&entry, sizeof(entry)); } } } //_____________________________________________________________________________ // const UInt8 * AUElement::RestoreState(const UInt8 *state) { union FloatInt32 { UInt32 i; AudioUnitParameterValue f; }; const UInt8 *p = state; UInt32 nparams = CFSwapInt32BigToHost(*(UInt32 *)p); p += sizeof(UInt32); for (UInt32 i = 0; i < nparams; ++i) { struct { AudioUnitParameterID paramID; AudioUnitParameterValue value; } entry; entry.paramID = CFSwapInt32BigToHost(*(UInt32 *)p); p += sizeof(UInt32); FloatInt32 temp; temp.i = CFSwapInt32BigToHost(*(UInt32 *)p); entry.value = temp.f; p += sizeof(AudioUnitParameterValue); SetParameter(entry.paramID, entry.value); } return p; } //_____________________________________________________________________________ // void AUElement::SetName (CFStringRef inName) { if (mElementName) CFRelease (mElementName); mElementName = inName; if (mElementName) CFRetain (mElementName); } //_____________________________________________________________________________ // AUIOElement::AUIOElement(AUBase *audioUnit) : AUElement(audioUnit), mWillAllocate (true) { mStreamFormat.SetAUCanonical(2, // stereo audioUnit->AudioUnitAPIVersion() == 1); // interleaved if API version 1, deinterleaved if version 2 mStreamFormat.mSampleRate = kAUDefaultSampleRate; } //_____________________________________________________________________________ // OSStatus AUIOElement::SetStreamFormat(const CAStreamBasicDescription &desc) { mStreamFormat = desc; return AUBase::noErr; } //_____________________________________________________________________________ // inFramesToAllocate == 0 implies the AudioUnit's max-frames-per-slice will be used void AUIOElement::AllocateBuffer(UInt32 inFramesToAllocate) { if (GetAudioUnit()->HasBegunInitializing()) { UInt32 framesToAllocate = inFramesToAllocate > 0 ? inFramesToAllocate : GetAudioUnit()->GetMaxFramesPerSlice(); // printf ("will allocate: %d\n", (int)((mWillAllocate && NeedsBufferSpace()) ? framesToAllocate : 0)); mIOBuffer.Allocate(mStreamFormat, (mWillAllocate && NeedsBufferSpace()) ? framesToAllocate : 0); } } //_____________________________________________________________________________ // void AUIOElement::DeallocateBuffer() { mIOBuffer.Deallocate(); } //_____________________________________________________________________________ // // AudioChannelLayout support // outLayoutTagsPtr WILL be NULL if called to find out how many // layouts that Audio Unit will report // return 0 (ie. NO channel layouts) if the AU doesn't require channel layout knowledge UInt32 AUIOElement::GetChannelLayoutTags (AudioChannelLayoutTag *outLayoutTagsPtr) { return 0; } // As the AudioChannelLayout can be a variable length structure // (though in most cases it won't be!!!) // The size of the ACL is always returned by the method // if outMapPtr is NOT-NULL, then AU should copy into this pointer (outMapPtr) the current ACL that it has in use. // the AU should also return whether the property is writable (that is the client can provide any arbitrary ACL that the audio unit will then honour) // or if the property is read only - which is the generally preferred mode. // If the AU doesn't require an AudioChannelLayout, then just return 0. UInt32 AUIOElement::GetAudioChannelLayout (AudioChannelLayout *outMapPtr, Boolean &outWritable) { return 0; } // the incoming channel map will be at least as big as a basic AudioChannelLayout // but its contents will determine its actual size // Subclass should overide if channel map is writable OSStatus AUIOElement::SetAudioChannelLayout (const AudioChannelLayout &inData) { return kAudioUnitErr_InvalidProperty; } // Some units support optional usage of channel maps - typically converter units // that can do channel remapping between different maps. In that optional case // the user should be able to remove a channel map if that is possible. // Typically this is NOT the case (e.g., the 3DMixer even in the stereo case // needs to know if it is rendering to speakers or headphones) OSStatus AUIOElement::RemoveAudioChannelLayout () { return kAudioUnitErr_InvalidPropertyValue; } //_____________________________________________________________________________ // AUScope::~AUScope() { for (ElementVector::iterator it = mElements.begin(); it != mElements.end(); ++it) delete *it; } //_____________________________________________________________________________ // void AUScope::SetNumberOfElements(UInt32 numElements) { if (mDelegate) return mDelegate->SetNumberOfElements(numElements); if (numElements > mElements.size()) { mElements.reserve(numElements); while (numElements > mElements.size()) { AUElement *elem = mCreator->CreateElement(GetScope(), static_cast(mElements.size())); mElements.push_back(elem); } } else while (numElements < mElements.size()) { AUElement *elem = mElements.back(); mElements.pop_back(); delete elem; } } //_____________________________________________________________________________ // bool AUScope::HasElementWithName () const { for (UInt32 i = 0; i < GetNumberOfElements(); ++i) { AUElement * el = const_cast(this)->GetElement (i); if (el && el->HasName()) { return true; } } return false; } //_____________________________________________________________________________ // void AUScope::AddElementNamesToDict (CFMutableDictionaryRef & inNameDict) { if (HasElementWithName()) { static char string[32]; CFMutableDictionaryRef elementDict = CFDictionaryCreateMutable (NULL, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); CFStringRef str; for (UInt32 i = 0; i < GetNumberOfElements(); ++i) { AUElement * el = GetElement (i); if (el && el->HasName()) { snprintf (string, sizeof(string), "%d", int(i)); str = CFStringCreateWithCString (NULL, string, kCFStringEncodingASCII); CFDictionarySetValue (elementDict, str, el->GetName()); CFRelease (str); } } snprintf (string, sizeof(string), "%d", int(mScope)); str = CFStringCreateWithCString (NULL, string, kCFStringEncodingASCII); CFDictionarySetValue (inNameDict, str, elementDict); CFRelease (str); CFRelease (elementDict); } } //_____________________________________________________________________________ // bool AUScope::RestoreElementNames (CFDictionaryRef& inNameDict) { static char string[32]; //first we have to see if we have enough elements bool didAddElements = false; unsigned int maxElNum = GetNumberOfElements(); int dictSize = static_cast(CFDictionaryGetCount(inNameDict)); CFStringRef * keys = (CFStringRef*)CA_malloc (dictSize * sizeof (CFStringRef)); CFDictionaryGetKeysAndValues (inNameDict, reinterpret_cast(keys), NULL); for (int i = 0; i < dictSize; i++) { unsigned int intKey = 0; CFStringGetCString (keys[i], string, 32, kCFStringEncodingASCII); int result = sscanf (string, "%u", &intKey); // check if sscanf succeeded and element index is less than max elements. if (result && UInt32(intKey) < maxElNum) { CFStringRef elName = reinterpret_cast(CFDictionaryGetValue (inNameDict, keys[i])); AUElement* element = GetElement (intKey); if (element) element->SetName (elName); } } free (keys); return didAddElements; } void AUScope::SaveState(CFMutableDataRef data) { AudioUnitElement nElems = GetNumberOfElements(); for (AudioUnitElement ielem = 0; ielem < nElems; ++ielem) { AUElement *element = GetElement(ielem); UInt32 nparams = element->GetNumberOfParameters(); if (nparams > 0) { struct { UInt32 scope; UInt32 element; } hdr; hdr.scope = CFSwapInt32HostToBig(GetScope()); hdr.element = CFSwapInt32HostToBig(ielem); CFDataAppendBytes(data, (UInt8 *)&hdr, sizeof(hdr)); element->SaveState(data); } } } const UInt8 * AUScope::RestoreState(const UInt8 *state) { const UInt8 *p = state; UInt32 elementIdx = CFSwapInt32BigToHost(*(UInt32 *)p); p += sizeof(UInt32); AUElement *element = GetElement(elementIdx); if (!element) { struct { AudioUnitParameterID paramID; AudioUnitParameterValue value; } entry; UInt32 nparams = CFSwapInt32BigToHost(*(UInt32 *)p); p += sizeof(UInt32); p += nparams * sizeof(entry); } else p = element->RestoreState(p); return p; }