/* Copyright (C) 2008 Paul Davis Author: Sampo Savolainen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #ifdef COMPILER_MSVC #include /* isinf() & isnan() are C99 standards, which older MSVC doesn't provide */ #define ISINF(val) !((bool)_finite((double)val)) #define ISNAN(val) (bool)_isnan((double)val) #else #define ISINF(val) std::isinf((val)) #define ISNAN(val) std::isnan((val)) #endif #include #include #include #include "ardour/audio_buffer.h" #include "ardour/data_type.h" #include "ardour/chan_mapping.h" #include "ardour/plugin_insert.h" #include "ardour/session.h" #include "plugin_eq_gui.h" #include "fft.h" #include "ardour_ui.h" #include "gui_thread.h" #include "pbd/i18n.h" using namespace ARDOUR; PluginEqGui::PluginEqGui(boost::shared_ptr pluginInsert) : _min_dB(-12.0) , _max_dB(+12.0) , _step_dB(3.0) , _buffer_size(0) , _signal_buffer_size(0) , _impulse_fft(0) , _signal_input_fft(0) , _signal_output_fft(0) , _plugin_insert(pluginInsert) { _signal_analysis_running = false; _samplerate = ARDOUR_UI::instance()->the_session()->frame_rate(); _log_coeff = (1.0 - 2.0 * (1000.0/(_samplerate/2.0))) / powf(1000.0/(_samplerate/2.0), 2.0); _log_max = log10f(1 + _log_coeff); // Setup analysis drawing area _analysis_scale_surface = 0; _analysis_area = new Gtk::DrawingArea(); _analysis_width = 256.0; _analysis_height = 256.0; _analysis_area->set_size_request(_analysis_width, _analysis_height); _analysis_area->add_events(Gdk::POINTER_MOTION_MASK | Gdk::LEAVE_NOTIFY_MASK | Gdk::BUTTON_PRESS_MASK); _analysis_area->signal_expose_event().connect( sigc::mem_fun (*this, &PluginEqGui::expose_analysis_area)); _analysis_area->signal_size_allocate().connect( sigc::mem_fun (*this, &PluginEqGui::resize_analysis_area)); _analysis_area->signal_motion_notify_event().connect( sigc::mem_fun (*this, &PluginEqGui::analysis_area_mouseover)); _analysis_area->signal_leave_notify_event().connect( sigc::mem_fun (*this, &PluginEqGui::analysis_area_mouseexit)); _analysis_area->signal_button_press_event().connect( sigc::mem_fun (*this, &PluginEqGui::analysis_area_mousedown)); // dB selection dBScaleModel = Gtk::ListStore::create(dBColumns); dBScaleCombo = new Gtk::ComboBox (dBScaleModel, false); dBScaleCombo->set_title (_("dB scale")); #define ADD_DB_ROW(MIN,MAX,STEP,NAME) \ { \ Gtk::TreeModel::Row row = *(dBScaleModel->append()); \ row[dBColumns.dBMin] = (MIN); \ row[dBColumns.dBMax] = (MAX); \ row[dBColumns.dBStep] = (STEP); \ row[dBColumns.name] = NAME; \ } ADD_DB_ROW( -6, +6, 1, "-6dB .. +6dB"); ADD_DB_ROW(-12, +12, 3, "-12dB .. +12dB"); ADD_DB_ROW(-24, +24, 5, "-24dB .. +24dB"); ADD_DB_ROW(-36, +36, 6, "-36dB .. +36dB"); ADD_DB_ROW(-64, +64,12, "-64dB .. +64dB"); #undef ADD_DB_ROW dBScaleCombo -> pack_start(dBColumns.name); dBScaleCombo -> set_active(1); dBScaleCombo -> signal_changed().connect( sigc::mem_fun(*this, &PluginEqGui::change_dB_scale) ); Gtk::Label *dBComboLabel = new Gtk::Label (_("dB scale")); Gtk::HBox *dBSelectBin = new Gtk::HBox(false, 5); dBSelectBin->add( *manage(dBComboLabel)); dBSelectBin->add( *manage(dBScaleCombo)); // Phase checkbutton _phase_button = new Gtk::CheckButton (_("Show phase")); _phase_button->set_active(true); _phase_button->signal_toggled().connect( sigc::mem_fun(*this, &PluginEqGui::redraw_scales)); // Freq/dB info for mouse over _pointer_info = new Gtk::Label ("", 1, 0.5); _pointer_info->set_size_request(_analysis_width / 4, -1); _pointer_info->set_name("PluginAnalysisInfoLabel"); // populate table attach( *manage(_analysis_area), 1, 4, 1, 2); attach( *manage(dBSelectBin), 1, 2, 2, 3, Gtk::SHRINK, Gtk::SHRINK); attach( *manage(_phase_button), 2, 3, 2, 3, Gtk::SHRINK, Gtk::SHRINK); attach( *manage(_pointer_info), 3, 4, 2, 3, Gtk::FILL, Gtk::SHRINK); } PluginEqGui::~PluginEqGui() { stop_listening (); if (_analysis_scale_surface) { cairo_surface_destroy (_analysis_scale_surface); } delete _impulse_fft; _impulse_fft = 0; delete _signal_input_fft; _signal_input_fft = 0; delete _signal_output_fft; _signal_output_fft = 0; // all gui objects are *manage'd by the inherited Table object } void PluginEqGui::start_listening () { if (!_plugin) { _plugin = _plugin_insert->get_impulse_analysis_plugin(); } _plugin->activate(); set_buffer_size(4096, 16384); // Connect the realtime signal collection callback _plugin_insert->AnalysisDataGathered.connect (analysis_connection, invalidator (*this), boost::bind (&PluginEqGui::signal_collect_callback, this, _1, _2), gui_context()); } void PluginEqGui::stop_listening () { analysis_connection.disconnect (); _plugin->deactivate (); } void PluginEqGui::on_hide() { stop_updating(); Gtk::Table::on_hide(); } void PluginEqGui::stop_updating() { if (_update_connection.connected()) { _update_connection.disconnect(); } } void PluginEqGui::start_updating() { if (!_update_connection.connected() && is_visible()) { _update_connection = Glib::signal_timeout().connect( sigc::mem_fun(this, &PluginEqGui::timeout_callback), 250); } } void PluginEqGui::on_show() { Gtk::Table::on_show(); start_updating(); Gtk::Widget *toplevel = get_toplevel(); if (toplevel) { if (!_window_unmap_connection.connected()) { _window_unmap_connection = toplevel->signal_unmap().connect( sigc::mem_fun(this, &PluginEqGui::stop_updating)); } if (!_window_map_connection.connected()) { _window_map_connection = toplevel->signal_map().connect( sigc::mem_fun(this, &PluginEqGui::start_updating)); } } } void PluginEqGui::change_dB_scale() { Gtk::TreeModel::iterator iter = dBScaleCombo -> get_active(); Gtk::TreeModel::Row row; if(iter && (row = *iter)) { _min_dB = row[dBColumns.dBMin]; _max_dB = row[dBColumns.dBMax]; _step_dB = row[dBColumns.dBStep]; redraw_scales(); } } void PluginEqGui::redraw_scales() { if (_analysis_scale_surface) { cairo_surface_destroy (_analysis_scale_surface); _analysis_scale_surface = 0; } _analysis_area->queue_draw(); // TODO: Add graph legend! } void PluginEqGui::set_buffer_size(uint32_t size, uint32_t signal_size) { if (_buffer_size == size && _signal_buffer_size == signal_size) { return; } GTKArdour::FFT *tmp1 = _impulse_fft; GTKArdour::FFT *tmp2 = _signal_input_fft; GTKArdour::FFT *tmp3 = _signal_output_fft; try { _impulse_fft = new GTKArdour::FFT(size); _signal_input_fft = new GTKArdour::FFT(signal_size); _signal_output_fft = new GTKArdour::FFT(signal_size); } catch( ... ) { // Don't care about lost memory, we're screwed anyhow _impulse_fft = tmp1; _signal_input_fft = tmp2; _signal_output_fft = tmp3; throw; } delete tmp1; delete tmp2; delete tmp3; _buffer_size = size; _signal_buffer_size = signal_size; // allocate separate in+out buffers, VST cannot process in-place ARDOUR::ChanCount acount (_plugin->get_info()->n_inputs + _plugin->get_info()->n_outputs); ARDOUR::ChanCount ccount = ARDOUR::ChanCount::max (_plugin->get_info()->n_inputs, _plugin->get_info()->n_outputs); for (ARDOUR::DataType::iterator i = ARDOUR::DataType::begin(); i != ARDOUR::DataType::end(); ++i) { _bufferset.ensure_buffers (*i, acount.get (*i), _buffer_size); _collect_bufferset.ensure_buffers (*i, ccount.get (*i), _buffer_size); } _bufferset.set_count (acount); _collect_bufferset.set_count (ccount); } void PluginEqGui::resize_analysis_area (Gtk::Allocation& size) { _analysis_width = (float)size.get_width(); _analysis_height = (float)size.get_height(); if (_analysis_scale_surface) { cairo_surface_destroy (_analysis_scale_surface); _analysis_scale_surface = 0; } _pointer_info->set_size_request(_analysis_width / 4, -1); } bool PluginEqGui::timeout_callback() { if (!_signal_analysis_running) { _signal_analysis_running = true; _plugin_insert -> collect_signal_for_analysis(_signal_buffer_size); } run_impulse_analysis(); return true; } void PluginEqGui::signal_collect_callback(ARDOUR::BufferSet *in, ARDOUR::BufferSet *out) { ENSURE_GUI_THREAD (*this, &PluginEqGui::signal_collect_callback, in, out); _signal_input_fft ->reset(); _signal_output_fft->reset(); for (uint32_t i = 0; i < _plugin_insert->input_streams().n_audio(); ++i) { _signal_input_fft ->analyze(in ->get_audio(i).data(), GTKArdour::FFT::HANN); } for (uint32_t i = 0; i < _plugin_insert->output_streams().n_audio(); ++i) { _signal_output_fft->analyze(out->get_audio(i).data(), GTKArdour::FFT::HANN); } _signal_input_fft ->calculate(); _signal_output_fft->calculate(); _signal_analysis_running = false; // This signals calls expose_analysis_area() _analysis_area->queue_draw(); } void PluginEqGui::run_impulse_analysis() { /* Allocate some thread-local buffers so that Plugin::connect_and_run can use them */ ARDOUR_UI::instance()->get_process_buffers (); uint32_t inputs = _plugin->get_info()->n_inputs.n_audio(); uint32_t outputs = _plugin->get_info()->n_outputs.n_audio(); // Create the impulse, can't use silence() because consecutive calls won't work for (uint32_t i = 0; i < inputs; ++i) { ARDOUR::AudioBuffer& buf = _bufferset.get_audio(i); ARDOUR::Sample* d = buf.data(); memset(d, 0, sizeof(ARDOUR::Sample)*_buffer_size); *d = 1.0; } ARDOUR::ChanMapping in_map(_plugin->get_info()->n_inputs); ARDOUR::ChanMapping out_map(_plugin->get_info()->n_outputs); // map output buffers after input buffers (no inplace for VST) out_map.offset_to (DataType::AUDIO, inputs); _plugin->set_block_size (_buffer_size); _plugin->connect_and_run(_bufferset, 0, _buffer_size, 1.0, in_map, out_map, _buffer_size, 0); framecnt_t f = _plugin->signal_latency (); // Adding user_latency() could be interesting // Gather all output, taking latency into account. _impulse_fft->reset(); // Silence collect buffers to copy data to, can't use silence() because consecutive calls won't work for (uint32_t i = 0; i < outputs; ++i) { ARDOUR::AudioBuffer &buf = _collect_bufferset.get_audio(i); ARDOUR::Sample *d = buf.data(); memset(d, 0, sizeof(ARDOUR::Sample)*_buffer_size); } if (f == 0) { //std::cerr << "0: no latency, copying full buffer, trivial.." << std::endl; for (uint32_t i = 0; i < outputs; ++i) { memcpy(_collect_bufferset.get_audio(i).data(), _bufferset.get_audio(inputs + i).data(), _buffer_size * sizeof(float)); } } else { //int C = 0; //std::cerr << (++C) << ": latency is " << f << " frames, doing split processing.." << std::endl; framecnt_t target_offset = 0; framecnt_t frames_left = _buffer_size; // refaktoroi do { if (f >= _buffer_size) { //std::cerr << (++C) << ": f (=" << f << ") is larger than buffer_size, still trying to reach the actual output" << std::endl; // there is no data in this buffer regarding to the input! f -= _buffer_size; } else { // this buffer contains either the first, last or a whole bu the output of the impulse // first part: offset is 0, so we copy to the start of _collect_bufferset // we start at output offset "f" // .. and copy "buffer size" - "f" - "offset" frames framecnt_t length = _buffer_size - f - target_offset; //std::cerr << (++C) << ": copying " << length << " frames to _collect_bufferset.get_audio(i)+" << target_offset << " from bufferset at offset " << f << std::endl; for (uint32_t i = 0; i < outputs; ++i) { memcpy(_collect_bufferset.get_audio(i).data(target_offset), _bufferset.get_audio(inputs + i).data() + f, length * sizeof(float)); } target_offset += length; frames_left -= length; f = 0; } if (frames_left > 0) { // Silence the buffers for (uint32_t i = 0; i < inputs; ++i) { ARDOUR::AudioBuffer &buf = _bufferset.get_audio(i); ARDOUR::Sample *d = buf.data(); memset(d, 0, sizeof(ARDOUR::Sample)*_buffer_size); } _plugin->connect_and_run (_bufferset, target_offset, target_offset + _buffer_size, 1.0, in_map, out_map, _buffer_size, 0); } } while ( frames_left > 0); } for (uint32_t i = 0; i < outputs; ++i) { _impulse_fft->analyze(_collect_bufferset.get_audio(i).data()); } // normalize the output _impulse_fft->calculate(); // This signals calls expose_analysis_area() _analysis_area->queue_draw(); ARDOUR_UI::instance()->drop_process_buffers (); } void PluginEqGui::update_pointer_info(float x, float y) { const int freq = std::max(1, (int) roundf((powf(10, x / _analysis_width * _log_max) - 1) * _samplerate / 2.0 / _log_coeff)); const float dB = _max_dB - y / _analysis_height * ( _max_dB - _min_dB ); std::stringstream ss; ss << std::fixed; if (freq >= 10000) { ss << std::setprecision (1) << freq / 1000.0 << "kHz"; } else if (freq >= 1000) { ss << std::setprecision (2) << freq / 1000.0 << "kHz"; } else { ss << std::setprecision (0) << freq << "Hz"; } ss << " " << std::setw(5) << std::setprecision (1) << std::showpos << dB; ss << std::setw(0) << "dB"; _pointer_info->set_text(ss.str()); } bool PluginEqGui::analysis_area_mouseover(GdkEventMotion *event) { update_pointer_info(event->x, event->y); return true; } bool PluginEqGui::analysis_area_mouseexit(GdkEventCrossing *) { _pointer_info->set_text(""); return true; } bool PluginEqGui::analysis_area_mousedown(GdkEventButton *event) { update_pointer_info(event->x, event->y); return true; } bool PluginEqGui::expose_analysis_area(GdkEventExpose *) { redraw_analysis_area(); return true; } void PluginEqGui::draw_analysis_scales(cairo_t *ref_cr) { // TODO: check whether we need rounding _analysis_scale_surface = cairo_surface_create_similar (cairo_get_target(ref_cr), CAIRO_CONTENT_COLOR, _analysis_width, _analysis_height); cairo_t *cr = cairo_create (_analysis_scale_surface); cairo_set_source_rgb(cr, 0.0, 0.0, 0.0); cairo_rectangle(cr, 0.0, 0.0, _analysis_width, _analysis_height); cairo_fill(cr); draw_scales_power(_analysis_area, cr); if (_phase_button->get_active()) { draw_scales_phase(_analysis_area, cr); } cairo_destroy(cr); } void PluginEqGui::redraw_analysis_area() { cairo_t *cr; cr = gdk_cairo_create(GDK_DRAWABLE(_analysis_area->get_window()->gobj())); if (_analysis_scale_surface == 0) { draw_analysis_scales(cr); } cairo_copy_page(cr); cairo_set_source_surface(cr, _analysis_scale_surface, 0.0, 0.0); cairo_paint(cr); if (_phase_button->get_active()) { plot_impulse_phase(_analysis_area, cr); } plot_impulse_amplitude(_analysis_area, cr); // TODO: make this optional plot_signal_amplitude_difference(_analysis_area, cr); cairo_destroy(cr); } #define PHASE_PROPORTION 0.5 void PluginEqGui::draw_scales_phase(Gtk::Widget */*w*/, cairo_t *cr) { float y; cairo_font_extents_t extents; cairo_font_extents(cr, &extents); char buf[256]; cairo_text_extents_t t_ext; for (uint32_t i = 0; i < 3; i++) { y = _analysis_height/2.0 - (float)i*(_analysis_height/8.0)*PHASE_PROPORTION; cairo_set_source_rgb(cr, .8, .9, 0.2); if (i == 0) { snprintf(buf,256, "0\u00b0"); } else { snprintf(buf,256, "%d\u00b0", (i * 45)); } cairo_text_extents(cr, buf, &t_ext); cairo_move_to(cr, _analysis_width - t_ext.width - t_ext.x_bearing - 2.0, y - extents.descent); cairo_show_text(cr, buf); if (i == 0) continue; cairo_set_source_rgba(cr, .8, .9, 0.2, 0.6/(float)i); cairo_move_to(cr, 0.0, y); cairo_line_to(cr, _analysis_width, y); y = _analysis_height/2.0 + (float)i*(_analysis_height/8.0)*PHASE_PROPORTION; // label snprintf(buf,256, "-%d\u00b0", (i * 45)); cairo_set_source_rgb(cr, .8, .9, 0.2); cairo_text_extents(cr, buf, &t_ext); cairo_move_to(cr, _analysis_width - t_ext.width - t_ext.x_bearing - 2.0, y - extents.descent); cairo_show_text(cr, buf); // line cairo_set_source_rgba(cr, .8, .9, 0.2, 0.6/(float)i); cairo_move_to(cr, 0.0, y); cairo_line_to(cr, _analysis_width, y); cairo_set_line_width (cr, 0.25 + 1.0/(float)(i+1)); cairo_stroke(cr); } } void PluginEqGui::plot_impulse_phase(Gtk::Widget *w, cairo_t *cr) { float x,y; int prevX = 0; float avgY = 0.0; int avgNum = 0; // float width = w->get_width(); float height = w->get_height(); cairo_set_source_rgba(cr, 0.95, 0.3, 0.2, 1.0); for (uint32_t i = 0; i < _impulse_fft->bins()-1; i++) { // x coordinate of bin i x = log10f(1.0 + (float)i / (float)_impulse_fft->bins() * _log_coeff) / _log_max; x *= _analysis_width; y = _analysis_height/2.0 - (_impulse_fft->phase_at_bin(i)/M_PI)*(_analysis_height/2.0)*PHASE_PROPORTION; if ( i == 0 ) { cairo_move_to(cr, x, y); avgY = 0; avgNum = 0; } else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) { avgY = avgY/(float)avgNum; if (avgY > (height * 10.0) ) avgY = height * 10.0; if (avgY < (-height * 10.0) ) avgY = -height * 10.0; cairo_line_to(cr, prevX, avgY); //cairo_line_to(cr, prevX, avgY/(float)avgNum); avgY = 0; avgNum = 0; } prevX = rint(x); avgY += y; avgNum++; } cairo_set_line_width (cr, 2.0); cairo_stroke(cr); } void PluginEqGui::draw_scales_power(Gtk::Widget */*w*/, cairo_t *cr) { if (_impulse_fft == 0) { return; } static float scales[] = { 30.0, 70.0, 125.0, 250.0, 500.0, 1000.0, 2000.0, 5000.0, 10000.0, 15000.0, 20000.0, -1.0 }; float divisor = _samplerate / 2.0 / _impulse_fft->bins(); float x; cairo_set_line_width (cr, 1.5); cairo_set_font_size(cr, 9); cairo_font_extents_t extents; cairo_font_extents(cr, &extents); // float fontXOffset = extents.descent + 1.0; char buf[256]; for (uint32_t i = 0; scales[i] != -1.0; ++i) { float bin = scales[i] / divisor; x = log10f(1.0 + bin / (float)_impulse_fft->bins() * _log_coeff) / _log_max; x *= _analysis_width; if (scales[i] < 1000.0) { snprintf(buf, 256, "%0.0f", scales[i]); } else { snprintf(buf, 256, "%0.0fk", scales[i]/1000.0); } cairo_set_source_rgb(cr, 0.4, 0.4, 0.4); //cairo_move_to(cr, x + fontXOffset, 3.0); cairo_move_to(cr, x - extents.height, 3.0); cairo_rotate(cr, M_PI / 2.0); cairo_show_text(cr, buf); cairo_rotate(cr, -M_PI / 2.0); cairo_stroke(cr); cairo_set_source_rgb(cr, 0.3, 0.3, 0.3); cairo_move_to(cr, x, _analysis_height); cairo_line_to(cr, x, 0.0); cairo_stroke(cr); } float y; //double dashes[] = { 1.0, 3.0, 4.5, 3.0 }; double dashes[] = { 3.0, 5.0 }; for (float dB = 0.0; dB < _max_dB; dB += _step_dB ) { snprintf(buf, 256, "+%0.0f", dB ); y = ( _max_dB - dB) / ( _max_dB - _min_dB ); //std::cerr << " y = " << y << std::endl; y *= _analysis_height; if (dB != 0.0) { cairo_set_source_rgb(cr, 0.4, 0.4, 0.4); cairo_move_to(cr, 1.0, y + extents.height + 1.0); cairo_show_text(cr, buf); cairo_stroke(cr); } cairo_set_source_rgb(cr, 0.2, 0.2, 0.2); cairo_move_to(cr, 0, y); cairo_line_to(cr, _analysis_width, y); cairo_stroke(cr); if (dB == 0.0) { cairo_set_dash(cr, dashes, 2, 0.0); } } for (float dB = - _step_dB; dB > _min_dB; dB -= _step_dB ) { snprintf(buf, 256, "%0.0f", dB ); y = ( _max_dB - dB) / ( _max_dB - _min_dB ); y *= _analysis_height; cairo_set_source_rgb(cr, 0.4, 0.4, 0.4); cairo_move_to(cr, 1.0, y - extents.descent - 1.0); cairo_show_text(cr, buf); cairo_stroke(cr); cairo_set_source_rgb(cr, 0.2, 0.2, 0.2); cairo_move_to(cr, 0, y); cairo_line_to(cr, _analysis_width, y); cairo_stroke(cr); } cairo_set_dash(cr, 0, 0, 0.0); } inline float power_to_dB(float a) { return 10.0 * log10f(a); } void PluginEqGui::plot_impulse_amplitude(Gtk::Widget *w, cairo_t *cr) { float x,y; int prevX = 0; float avgY = 0.0; int avgNum = 0; // float width = w->get_width(); float height = w->get_height(); cairo_set_source_rgb(cr, 1.0, 1.0, 1.0); cairo_set_line_width (cr, 2.5); for (uint32_t i = 0; i < _impulse_fft->bins()-1; i++) { // x coordinate of bin i x = log10f(1.0 + (float)i / (float)_impulse_fft->bins() * _log_coeff) / _log_max; x *= _analysis_width; float yCoeff = ( power_to_dB(_impulse_fft->power_at_bin(i)) - _min_dB) / (_max_dB - _min_dB); y = _analysis_height - _analysis_height*yCoeff; if ( i == 0 ) { cairo_move_to(cr, x, y); avgY = 0; avgNum = 0; } else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) { avgY = avgY/(float)avgNum; if (avgY > (height * 10.0) ) avgY = height * 10.0; if (avgY < (-height * 10.0) ) avgY = -height * 10.0; cairo_line_to(cr, prevX, avgY); //cairo_line_to(cr, prevX, avgY/(float)avgNum); avgY = 0; avgNum = 0; } prevX = rint(x); avgY += y; avgNum++; } cairo_stroke(cr); } void PluginEqGui::plot_signal_amplitude_difference(Gtk::Widget *w, cairo_t *cr) { float x,y; int prevX = 0; float avgY = 0.0; int avgNum = 0; // float width = w->get_width(); float height = w->get_height(); cairo_set_source_rgb(cr, 0.0, 1.0, 0.0); cairo_set_line_width (cr, 1.5); for (uint32_t i = 0; i < _signal_input_fft->bins()-1; i++) { // x coordinate of bin i x = log10f(1.0 + (float)i / (float)_signal_input_fft->bins() * _log_coeff) / _log_max; x *= _analysis_width; float power_out = _signal_output_fft->power_at_bin (i) + 1e-30; float power_in = _signal_input_fft ->power_at_bin (i) + 1e-30; float power = power_to_dB (power_out / power_in); assert (!ISINF(power)); assert (!ISNAN(power)); float yCoeff = ( power - _min_dB) / (_max_dB - _min_dB); y = _analysis_height - _analysis_height*yCoeff; if ( i == 0 ) { cairo_move_to(cr, x, y); avgY = 0; avgNum = 0; } else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) { avgY = avgY/(float)avgNum; if (avgY > (height * 10.0) ) avgY = height * 10.0; if (avgY < (-height * 10.0) ) avgY = -height * 10.0; cairo_line_to(cr, prevX, avgY); avgY = 0; avgNum = 0; } prevX = rint(x); avgY += y; avgNum++; } cairo_stroke(cr); }