/* * Copyright (C) 2006-2009 David Robillard * Copyright (C) 2006-2017 Paul Davis * Copyright (C) 2006 Sampo Savolainen * Copyright (C) 2016-2017 Robin Gareus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #ifdef COMPILER_MSVC #include using std::min; using std::max; #endif #include #include #include #include #include #include #include #include #include "pbd/stl_delete.h" #include #include "fft_graph.h" #include "analysis_window.h" #include "public_editor.h" #include "pbd/i18n.h" using namespace std; using namespace Gtk; using namespace Gdk; FFTGraph::FFTGraph (int windowSize) { _logScale = 0; _in = 0; _out = 0; _hanning = 0; _logScale = 0; _surface = 0; _a_window = 0; _show_minmax = false; _show_normalized = false; _show_proportional = false; _ann_x = _ann_y = -1; _yoff = v_margin; _ann_area.width = 0; _ann_area.height = 0; setWindowSize (windowSize); set_events (Gdk::POINTER_MOTION_MASK | Gdk::LEAVE_NOTIFY_MASK | Gdk::BUTTON_PRESS_MASK); } void FFTGraph::setWindowSize (int windowSize) { if (_a_window) { Glib::Threads::Mutex::Lock lm (_a_window->track_list_lock); setWindowSize_internal (windowSize); } else { setWindowSize_internal (windowSize); } } void FFTGraph::setWindowSize_internal (int windowSize) { // remove old tracklist & graphs if (_a_window) { _a_window->clear_tracklist (); } _windowSize = windowSize; _dataSize = windowSize / 2; if (_in != 0) { fftwf_destroy_plan (_plan); free (_in); _in = 0; } if (_out != 0) { free (_out); _out = 0; } if (_hanning != 0) { free (_hanning); _hanning = 0; } if (_logScale != 0) { free (_logScale); _logScale = 0; } // When destroying, window size is set to zero to free up memory if (windowSize == 0) { return; } // FFT input & output buffers _in = (float *) fftwf_malloc (sizeof (float) * _windowSize); _out = (float *) fftwf_malloc (sizeof (float) * _windowSize); // Hanning window _hanning = (float *) malloc (sizeof (float) * _windowSize); // normalize the window double sum = 0.0; for (unsigned int i = 0; i < _windowSize; ++i) { _hanning[i] = 0.5f - (0.5f * (float) cos (2.0f * M_PI * (float)i / (float)(_windowSize))); sum += _hanning[i]; } double isum = 2.0 / sum; for (unsigned int i = 0; i < _windowSize; i++) { _hanning[i] *= isum; } _logScale = (int *) malloc (sizeof (int) * _dataSize); for (unsigned int i = 0; i < _dataSize; i++) { _logScale[i] = 0; } _plan = fftwf_plan_r2r_1d (_windowSize, _in, _out, FFTW_R2HC, FFTW_MEASURE); } FFTGraph::~FFTGraph () { // This will free everything setWindowSize (0); if (_surface) { cairo_surface_destroy (_surface); } } bool FFTGraph::on_expose_event (GdkEventExpose* event) { cairo_t* cr = gdk_cairo_create (GDK_DRAWABLE (get_window ()->gobj ())); cairo_rectangle (cr, event->area.x, event->area.y, event->area.width, event->area.height); cairo_clip (cr); cairo_set_source_surface(cr, _surface, 0, 0); cairo_paint (cr); if (_ann_x > 0 && _ann_y > 0) { const float x = _ann_x - hl_margin; const float freq = expf(_fft_log_base * x / currentScaleWidth) * _fft_start; std::stringstream ss; if (freq >= 10000) { ss << std::setprecision (1) << std::fixed << freq / 1000 << " kHz"; } else if (freq >= 1000) { ss << std::setprecision (2) << std::fixed << freq / 1000 << " kHz"; } else { ss << std::setprecision (0) << std::fixed << freq << " Hz"; } layout->set_text (ss.str ()); int lw, lh; layout->get_pixel_size (lw, lh); lw|=1; lh|=1; const float y0 = _ann_y - lh - 7; _ann_area.x = _ann_x - 1 - lw * .5; _ann_area.y = y0 - 1; _ann_area.width = lw + 3; _ann_area.height = lh + 8; cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 0.7); cairo_rectangle (cr, _ann_x - 1 - lw * .5, y0 - 1, lw + 2, lh + 2); cairo_fill (cr); cairo_move_to (cr, _ann_x , _ann_y - 0.5); cairo_rel_line_to (cr, -3.0, -5.5); cairo_rel_line_to (cr, 6, 0); cairo_close_path (cr); cairo_fill (cr); cairo_set_source_rgba (cr, 0.0, 0.0, 0.0, 1.0); cairo_move_to (cr, _ann_x - lw / 2, y0); pango_cairo_update_layout (cr, layout->gobj ()); pango_cairo_show_layout (cr, layout->gobj ()); } #ifdef HARLEQUIN_DEBUGGING cairo_rectangle (cr, 0, 0, width, height); cairo_set_source_rgba (cr, (random() % 255) / 255.f, (random() % 255) / 255.f, 0.0, 0.5); cairo_fill (cr); #endif cairo_destroy (cr); return true; } bool FFTGraph::on_motion_notify_event (GdkEventMotion* ev) { gint x, y; x = (int) floor (ev->x); y = (int) floor (ev->y); if (x <= hl_margin + 1 || x >= width - hr_margin) { x = -1; } if (y <= _yoff || y >= height - v_margin - 1) { y = -1; } if (x == _ann_x && y == _ann_y) { return true; } _ann_x = x; _ann_y = y; if (_ann_area.width == 0 || _ann_area.height == 0) { queue_draw (); } else { queue_draw_area (_ann_area.x, _ann_area.y, _ann_area.width, _ann_area.height + 1); } if (_ann_x > 0 &&_ann_y > 0) { queue_draw_area (_ann_x - _ann_area.width, _ann_y - _ann_area.height - 1, _ann_area.width * 2, _ann_area.height + 2); } return true; } bool FFTGraph::on_leave_notify_event (GdkEventCrossing *) { if (_ann_x == -1 && _ann_y == -1) { return true; } _ann_x = _ann_y = -1; if (_ann_area.width == 0 || _ann_area.height == 0) { queue_draw (); } else { queue_draw_area (_ann_area.x, _ann_area.y, _ann_area.width, _ann_area.height + 1); } _ann_area.width = _ann_area.height = 0; return false; } FFTResult * FFTGraph::prepareResult (Gdk::Color color, string trackname) { FFTResult *res = new FFTResult (this, color, trackname); return res; } void FFTGraph::set_analysis_window (AnalysisWindow *a_window) { _a_window = a_window; } int FFTGraph::draw_scales (cairo_t* cr) { int label_height = v_margin; cairo_set_source_rgba (cr, 0.0, 0.0, 0.0, 1.0); cairo_rectangle (cr, 0, 0, width, height); cairo_fill (cr); /* * 1 5 * _ _ * | | * 2 | | 4 * |________| * 3 */ cairo_set_line_width (cr, 1.0); cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 1.0); cairo_move_to (cr, 3 , .5 + v_margin); cairo_line_to (cr, .5 + hl_margin , .5 + v_margin); // 1 cairo_line_to (cr, .5 + hl_margin , .5 + height - v_margin); // 2 cairo_line_to (cr, 1.5 + width - hr_margin, .5 + height - v_margin); // 3 cairo_line_to (cr, 1.5 + width - hr_margin, .5 + v_margin); // 4 cairo_line_to (cr, width - 3 , .5 + v_margin); // 5 cairo_stroke (cr); if (! layout) { layout = create_pango_layout (""); layout->set_font_description (get_style ()->get_font ()); } // Draw x-axis scale 1/3 octaves centered around 1K int overlap = 0; // make sure 1K (x=0) is visible for (int x = 0; x < 27; ++x) { float freq = powf (2.f, x / 3.0) * 1000.f; if (freq <= _fft_start) { continue; } if (freq >= _fft_end) { break; } const float pos = currentScaleWidth * logf (freq / _fft_start) / _fft_log_base; const int coord = floor (hl_margin + pos); if (coord < overlap) { continue; } std::stringstream ss; if (freq >= 10000) { ss << std::setprecision (1) << std::fixed << freq / 1000 << "k"; } else if (freq >= 1000) { ss << std::setprecision (2) << std::fixed << freq / 1000 << "k"; } else { ss << std::setprecision (0) << std::fixed << freq << "Hz"; } layout->set_text (ss.str ()); int lw, lh; layout->get_pixel_size (lw, lh); overlap = coord + lw + 3; if (coord + lw / 2 > width - hr_margin - 2) { break; } if (v_margin / 2 + lh > label_height) { label_height = v_margin / 2 + lh; } cairo_set_source_rgba (cr, 0.2, 0.2, 0.2, 1.0); cairo_move_to (cr, coord, v_margin); cairo_line_to (cr, coord, height - v_margin - 1); cairo_stroke (cr); cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 1.0); cairo_move_to (cr, coord - lw / 2, v_margin / 2); pango_cairo_update_layout (cr, layout->gobj ()); pango_cairo_show_layout (cr, layout->gobj ()); } // now from 1K down to 4Hz for (int x = 0; x > -24; --x) { float freq = powf (2.f, x / 3.0) * 1000.f; if (freq >= _fft_end) { continue; } if (freq <= _fft_start) { break; } const float pos = currentScaleWidth * logf (freq / _fft_start) / _fft_log_base; const int coord = floor (hl_margin + pos); if (x != 0 && coord > overlap) { continue; } std::stringstream ss; if (freq >= 10000) { ss << std::setprecision (1) << std::fixed << freq / 1000 << "k"; } else if (freq >= 1000) { ss << std::setprecision (2) << std::fixed << freq / 1000 << "k"; } else { ss << std::setprecision (0) << std::fixed << freq << "Hz"; } layout->set_text (ss.str ()); int lw, lh; layout->get_pixel_size (lw, lh); overlap = coord - lw - 3; if (coord - lw / 2 < hl_margin + 2) { break; } if (x == 0) { // just get overlap position continue; } if (v_margin / 2 + lh > label_height) { label_height = v_margin / 2 + lh; } cairo_set_source_rgba (cr, 0.2, 0.2, 0.2, 1.0); cairo_move_to (cr, coord, v_margin); cairo_line_to (cr, coord, height - v_margin - 1); cairo_stroke (cr); cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 1.0); cairo_move_to (cr, coord - lw / 2, v_margin / 2); pango_cairo_update_layout (cr, layout->gobj ()); pango_cairo_show_layout (cr, layout->gobj ()); } return label_height; } void FFTGraph::redraw () { assert (_surface); cairo_t* cr = cairo_create (_surface); _yoff = draw_scales (cr); if (_a_window == 0) { cairo_destroy (cr); queue_draw (); return; } Glib::Threads::Mutex::Lock lm (_a_window->track_list_lock); if (!_a_window->track_list_ready) { cairo_destroy (cr); queue_draw (); return; } float minf; float maxf; TreeNodeChildren track_rows = _a_window->track_list.get_model ()->children (); if (!_show_normalized) { maxf = 0.0f; minf = -108.0f; } else { minf = 999.0f; maxf = -999.0f; for (TreeIter i = track_rows.begin (); i != track_rows.end (); i++) { TreeModel::Row row = *i; FFTResult *res = row[_a_window->tlcols.graph]; // disregard fft analysis from empty signals if (res->minimum (_show_proportional) == res->maximum (_show_proportional)) { continue; } // don't include invisible graphs if (!row[_a_window->tlcols.visible]) { continue; } minf = std::min (minf, res->minimum (_show_proportional)); maxf = std::max (maxf, res->maximum (_show_proportional)); } } // clamp range, > -200dBFS, at least 24dB (two y-axis labels) range minf = std::max (-200.f, minf); if (maxf <= minf) { cairo_destroy (cr); queue_draw (); return; } if (maxf - minf < 24) { maxf += 6.f; minf = maxf - 24.f; } cairo_set_line_width (cr, 1.5); cairo_translate (cr, hl_margin + 1, _yoff); float fft_pane_size_w = width - hl_margin - hr_margin; float fft_pane_size_h = height - v_margin - 1 - _yoff; double pixels_per_db = (double)fft_pane_size_h / (double)(maxf - minf); // draw y-axis dB cairo_set_source_rgba (cr, .8, .8, .8, 1.0); int btm_lbl = fft_pane_size_h; { // y-axis legend layout->set_text (_("dBFS")); int lw, lh; layout->get_pixel_size (lw, lh); cairo_move_to (cr, -2 - lw, fft_pane_size_h - lh / 2); pango_cairo_update_layout (cr, layout->gobj ()); pango_cairo_show_layout (cr, layout->gobj ()); btm_lbl = fft_pane_size_h - lh; } for (int x = -6; x >= -200; x -= 12) { float yp = 1.5 + fft_pane_size_h - rint ((x - minf) * pixels_per_db); assert (layout); std::stringstream ss; ss << x; layout->set_text (ss.str ()); int lw, lh; layout->get_pixel_size (lw, lh); if (yp + 2 + lh / 2 > btm_lbl) { continue; } if (yp < 2 + lh / 2) { continue; } cairo_set_source_rgba (cr, .8, .8, .8, 1.0); cairo_move_to (cr, -2 - lw, yp - lh / 2); pango_cairo_update_layout (cr, layout->gobj ()); pango_cairo_show_layout (cr, layout->gobj ()); cairo_set_source_rgba (cr, .2, .2, .2, 1.0); cairo_move_to (cr, 0, yp); cairo_line_to (cr, fft_pane_size_w, yp); cairo_stroke (cr); } cairo_rectangle (cr, 1, 1, fft_pane_size_w, fft_pane_size_h); cairo_clip (cr); cairo_set_line_cap (cr, CAIRO_LINE_CAP_BUTT); cairo_set_line_join (cr, CAIRO_LINE_JOIN_ROUND); for (TreeIter i = track_rows.begin (); i != track_rows.end (); i++) { TreeModel::Row row = *i; // don't show graphs for tracks which are deselected if (!row[_a_window->tlcols.visible]) { continue; } FFTResult *res = row[_a_window->tlcols.graph]; // don't show graphs for empty signals if (res->minimum (_show_proportional) == res->maximum (_show_proportional)) { continue; } float mpp; float X,Y; if (_show_minmax) { X = 0.5f + _logScale[0]; Y = 1.5f + fft_pane_size_h - pixels_per_db * (res->maxAt (0, _show_proportional) - minf); cairo_move_to (cr, X, Y); // Draw the line of maximum values mpp = minf; for (unsigned int x = 1; x < res->length () - 1; ++x) { mpp = std::max (mpp, res->maxAt (x, _show_proportional)); if (_logScale[x] == _logScale[x + 1]) { continue; } mpp = fmin (mpp, maxf); X = 0.5f + _logScale[x]; Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf); cairo_line_to (cr, X, Y); mpp = minf; } mpp = maxf; // Draw back to the start using the minimum value for (int x = res->length () - 1; x >= 0; --x) { mpp = std::min (mpp, res->minAt (x, _show_proportional)); if (_logScale[x] == _logScale[x + 1]) { continue; } mpp = fmax (mpp, minf); X = 0.5f + _logScale[x]; Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf); cairo_line_to (cr, X, Y); mpp = maxf; } cairo_set_source_rgba (cr, res->get_color ().get_red_p (), res->get_color ().get_green_p (), res->get_color ().get_blue_p (), 0.30); cairo_close_path (cr); cairo_fill (cr); } // draw max of averages X = 0.5f + _logScale[0]; Y = 1.5f + fft_pane_size_h - pixels_per_db * (res->avgAt (0, _show_proportional) - minf); cairo_move_to (cr, X, Y); mpp = minf; for (unsigned int x = 0; x < res->length () - 1; x++) { mpp = std::max (mpp, res->avgAt (x, _show_proportional)); if (_logScale[x] == _logScale[x + 1]) { continue; } mpp = fmax (mpp, minf); mpp = fmin (mpp, maxf); X = 0.5f + _logScale[x]; Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf); cairo_line_to (cr, X, Y); mpp = minf; } cairo_set_source_rgb (cr, res->get_color ().get_red_p (), res->get_color ().get_green_p (), res->get_color ().get_blue_p ()); cairo_stroke (cr); } cairo_destroy (cr); queue_draw (); } void FFTGraph::on_size_request (Gtk::Requisition* requisition) { width = max (requisition->width, minScaleWidth + hl_margin + hr_margin); height = max (requisition->height, minScaleHeight + 2 + v_margin * 2); requisition->width = width;; requisition->height = height; } void FFTGraph::on_size_allocate (Gtk::Allocation & alloc) { width = alloc.get_width (); height = alloc.get_height (); update_size (); DrawingArea::on_size_allocate (alloc); } void FFTGraph::update_size () { samplecnt_t SR = PublicEditor::instance ().session ()->nominal_sample_rate (); _fft_start = SR / (double)_dataSize; _fft_end = .5 * SR; _fft_log_base = logf (.5 * _dataSize); currentScaleWidth = width - hl_margin - hr_margin; _logScale[0] = 0; for (unsigned int i = 1; i < _dataSize; ++i) { _logScale[i] = floor (currentScaleWidth * logf (.5 * i) / _fft_log_base); } if (_surface) { cairo_surface_destroy (_surface); } _surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, width, height); redraw (); }