/* Copyright (C) 2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include "fft_graph.h" #include "analysis_window.h" using namespace std; using namespace Gtk; using namespace Gdk; FFTGraph::FFTGraph(int windowSize) { _logScale = 0; _in = 0; _out = 0; _hanning = 0; _logScale = 0; _a_window = 0; setWindowSize(windowSize); } void FFTGraph::setWindowSize(int windowSize) { if (_a_window) { Glib::Mutex::Lock lm (_a_window->track_list_lock); setWindowSize_internal(windowSize); } else { setWindowSize_internal(windowSize); } } void FFTGraph::setWindowSize_internal(int windowSize) { // remove old tracklist & graphs if (_a_window) { _a_window->clear_tracklist(); } _windowSize = windowSize; _dataSize = windowSize / 2; if (_in != 0) { fftwf_destroy_plan(_plan); free(_in); _in = 0; } if (_out != 0) { free(_out); _out = 0; } if (_hanning != 0) { free(_hanning); _hanning = 0; } if (_logScale != 0) { free(_logScale); _logScale = 0; } // When destroying, window size is set to zero to free up memory if (windowSize == 0) return; // FFT input & output buffers _in = (float *) fftwf_malloc(sizeof(float) * _windowSize); _out = (float *) fftwf_malloc(sizeof(float) * _windowSize); // Hanning window _hanning = (float *) malloc(sizeof(float) * _windowSize); // normalize the window double sum = 0.0; for (int i=0; i < _windowSize; i++) { _hanning[i]=0.81f * ( 0.5f - (0.5f * (float) cos(2.0f * M_PI * (float)i / (float)(_windowSize)))); sum += _hanning[i]; } double isum = 1.0 / sum; for (int i=0; i < _windowSize; i++) { _hanning[i] *= isum; } _logScale = (int *) malloc(sizeof(int) * _dataSize); for (int i = 0; i < _dataSize; i++) { _logScale[i] = (int)floor(log10( 1.0 + i * 9.0 / (double)_dataSize) * (double)scaleWidth); } _plan = fftwf_plan_r2r_1d(_windowSize, _in, _out, FFTW_R2HC, FFTW_ESTIMATE); } FFTGraph::~FFTGraph() { // This will free everything setWindowSize(0); } bool FFTGraph::on_expose_event (GdkEventExpose* event) { redraw(); return true; } FFTResult * FFTGraph::prepareResult(Gdk::Color color, string trackname) { FFTResult *res = new FFTResult(this, color, trackname); return res; } void FFTGraph::analyze(float *window, float *composite) { int i; // Copy the data and apply the hanning window for (i = 0; i < _windowSize; i++) { _in[i] = window[ i ] * _hanning[ i ]; } fftwf_execute(_plan); composite[0] += (_out[0] * _out[0]); for (i=1; i < _dataSize - 1; i++) { // TODO: check with Jesse whether this is really correct composite[i] += (_out[i] * _out[i]) + (_out[_windowSize-i] * _out[_windowSize-i]); } } void FFTGraph::set_analysis_window(AnalysisWindow *a_window) { _a_window = a_window; } void FFTGraph::draw_scales(Glib::RefPtr window) { Glib::RefPtr style = get_style(); Glib::RefPtr black = style->get_black_gc(); Glib::RefPtr white = style->get_white_gc(); window->draw_rectangle(black, true, 0, 0, width, height); /** * 4 5 * _ _ * | | * 1 | | 2 * |________| * 3 **/ // Line 1 window->draw_line(white, h_margin, v_margin, h_margin, height - v_margin ); // Line 2 window->draw_line(white, width - h_margin, v_margin, width - h_margin, height - v_margin ); // Line 3 window->draw_line(white, h_margin, height - v_margin, width - h_margin, height - v_margin ); #define DB_METRIC_LENGTH 8 // Line 5 window->draw_line(white, h_margin - DB_METRIC_LENGTH, v_margin, h_margin, v_margin ); // Line 6 window->draw_line(white, width - h_margin, v_margin, width - h_margin + DB_METRIC_LENGTH, v_margin ); if (graph_gc == 0) { graph_gc = GC::create( get_window() ); } Color grey; grey.set_rgb_p(0.2, 0.2, 0.2); graph_gc->set_rgb_fg_color( grey ); if (layout == 0) { layout = create_pango_layout (""); layout->set_font_description (get_style()->get_font()); } // Draw logscale int logscale_pos = 0; int position_on_scale; for (int x = 1; x < 8; x++) { position_on_scale = (int)floor( (double)scaleWidth*(double)x/8.0); while (_logScale[logscale_pos] < position_on_scale) logscale_pos++; int coord = (int)(v_margin + 1.0 + position_on_scale); int SR = 44100; int rate_at_pos = (int)((double)(SR/2) * (double)logscale_pos / (double)_dataSize); char buf[32]; snprintf(buf,32,"%dhz",rate_at_pos); std::string label = buf; layout->set_text(label); window->draw_line(graph_gc, coord, v_margin, coord, height - v_margin); int width, height; layout->get_pixel_size (width, height); window->draw_layout(white, coord - width / 2, v_margin / 2, layout); } } void FFTGraph::redraw() { Glib::Mutex::Lock lm (_a_window->track_list_lock); draw_scales(get_window()); if (_a_window == 0) return; if (!_a_window->track_list_ready) return; // Find "session wide" min & max float min = 1000000000000.0; float max = -1000000000000.0; TreeNodeChildren track_rows = _a_window->track_list.get_model()->children(); for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) { TreeModel::Row row = *i; FFTResult *res = row[_a_window->tlcols.graph]; // disregard fft analysis from empty signals if (res->minimum() == res->maximum()) { continue; } if ( res->minimum() < min) { min = res->minimum(); } if ( res->maximum() > max) { max = res->maximum(); } } int graph_height = height - 2 * h_margin; if (graph_gc == 0) { graph_gc = GC::create( get_window() ); } double pixels_per_db = (double)graph_height / (double)(max - min); for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) { TreeModel::Row row = *i; // don't show graphs for tracks which are deselected if (!row[_a_window->tlcols.visible]) { continue; } FFTResult *res = row[_a_window->tlcols.graph]; // don't show graphs for empty signals if (res->minimum() == res->maximum()) { continue; } std::string name = row[_a_window->tlcols.trackname]; // Set color from track graph_gc->set_rgb_fg_color( res->get_color() ); float mpp = -1000000.0; int prevx = 0; float prevSample = min; for (int x = 0; x < res->length() - 1; x++) { if (res->sampleAt(x) > mpp) mpp = res->sampleAt(x); // If the next point on the log scale is at the same location, // don't draw yet if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) { continue; } get_window()->draw_line( graph_gc, v_margin + 1 + prevx, graph_height - (int)floor( (prevSample - min) * pixels_per_db) + h_margin - 1, v_margin + 1 + _logScale[x], graph_height - (int)floor( (mpp - min) * pixels_per_db) + h_margin - 1); prevx = _logScale[x]; prevSample = mpp; mpp = -1000000.0; } } } void FFTGraph::on_size_request(Gtk::Requisition* requisition) { width = scaleWidth + h_margin * 2; height = scaleHeight + 2 + v_margin * 2; if (_logScale != 0) { free(_logScale); } _logScale = (int *) malloc(sizeof(int) * _dataSize); //cerr << "LogScale: " << endl; for (int i = 0; i < _dataSize; i++) { _logScale[i] = (int)floor(log10( 1.0 + i * 9.0 / (double)_dataSize) * (double)scaleWidth); //cerr << i << ":\t" << _logScale[i] << endl; } requisition->width = width;; requisition->height = height; } void FFTGraph::on_size_allocate(Gtk::Allocation & alloc) { width = alloc.get_width(); height = alloc.get_height(); DrawingArea::on_size_allocate (alloc); }