/* Copyright (C) 2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include "fft_graph.h" #include "analysis_window.h" using namespace std; using namespace Gtk; using namespace Gdk; FFTGraph::FFTGraph(int windowSize) { _logScale = 0; _in = 0; _out = 0; _hanning = 0; _logScale = 0; _a_window = 0; _show_minmax = false; _show_normalized = false; setWindowSize(windowSize); } void FFTGraph::setWindowSize(int windowSize) { if (_a_window) { Glib::Mutex::Lock lm (_a_window->track_list_lock); setWindowSize_internal(windowSize); } else { setWindowSize_internal(windowSize); } } void FFTGraph::setWindowSize_internal(int windowSize) { // remove old tracklist & graphs if (_a_window) { _a_window->clear_tracklist(); } _windowSize = windowSize; _dataSize = windowSize / 2; if (_in != 0) { fftwf_destroy_plan(_plan); free(_in); _in = 0; } if (_out != 0) { free(_out); _out = 0; } if (_hanning != 0) { free(_hanning); _hanning = 0; } if (_logScale != 0) { free(_logScale); _logScale = 0; } // When destroying, window size is set to zero to free up memory if (windowSize == 0) return; // FFT input & output buffers _in = (float *) fftwf_malloc(sizeof(float) * _windowSize); _out = (float *) fftwf_malloc(sizeof(float) * _windowSize); // Hanning window _hanning = (float *) malloc(sizeof(float) * _windowSize); // normalize the window double sum = 0.0; for (int i=0; i < _windowSize; i++) { _hanning[i]=0.81f * ( 0.5f - (0.5f * (float) cos(2.0f * M_PI * (float)i / (float)(_windowSize)))); sum += _hanning[i]; } double isum = 1.0 / sum; for (int i=0; i < _windowSize; i++) { _hanning[i] *= isum; } _logScale = (int *) malloc(sizeof(int) * _dataSize); //float count = 0; for (int i = 0; i < _dataSize; i++) { _logScale[i] = 0; } _plan = fftwf_plan_r2r_1d(_windowSize, _in, _out, FFTW_R2HC, FFTW_ESTIMATE); } FFTGraph::~FFTGraph() { // This will free everything setWindowSize(0); } bool FFTGraph::on_expose_event (GdkEventExpose* event) { redraw(); return true; } FFTResult * FFTGraph::prepareResult(Gdk::Color color, string trackname) { FFTResult *res = new FFTResult(this, color, trackname); return res; } void FFTGraph::set_analysis_window(AnalysisWindow *a_window) { _a_window = a_window; } void FFTGraph::draw_scales(Glib::RefPtr window) { Glib::RefPtr style = get_style(); Glib::RefPtr black = style->get_black_gc(); Glib::RefPtr white = style->get_white_gc(); window->draw_rectangle(black, true, 0, 0, width, height); /** * 4 5 * _ _ * | | * 1 | | 2 * |________| * 3 **/ // Line 1 window->draw_line(white, h_margin, v_margin, h_margin, height - v_margin ); // Line 2 window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + 1, height - v_margin ); // Line 3 window->draw_line(white, h_margin, height - v_margin, width - h_margin, height - v_margin ); #define DB_METRIC_LENGTH 8 // Line 4 window->draw_line(white, h_margin - DB_METRIC_LENGTH, v_margin, h_margin, v_margin ); // Line 5 window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + DB_METRIC_LENGTH, v_margin ); if (graph_gc == 0) { graph_gc = GC::create( get_window() ); } Color grey; grey.set_rgb_p(0.2, 0.2, 0.2); graph_gc->set_rgb_fg_color( grey ); if (layout == 0) { layout = create_pango_layout (""); layout->set_font_description (get_style()->get_font()); } // Draw logscale int logscale_pos = 0; int position_on_scale; /* TODO, write better scales and change the log function so that octaves are of equal pixel length float scale_points[10] = { 55.0, 110.0, 220.0, 440.0, 880.0, 1760.0, 3520.0, 7040.0, 14080.0, 28160.0 }; for (int x = 0; x < 10; x++) { // i = 0.. _dataSize-1 float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize); freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) ); } */ for (int x = 1; x < 8; x++) { position_on_scale = (int)floor( (double)currentScaleWidth*(double)x/8.0); while (_logScale[logscale_pos] < position_on_scale) logscale_pos++; int coord = (int)(v_margin + 1.0 + position_on_scale); int SR = 44100; int rate_at_pos = (int)((double)(SR/2) * (double)logscale_pos / (double)_dataSize); char buf[32]; if (rate_at_pos < 1000) snprintf(buf,32,"%dHz",rate_at_pos); else snprintf(buf,32,"%dk",(int)floor( (float)rate_at_pos/(float)1000) ); std::string label = buf; layout->set_text(label); window->draw_line(graph_gc, coord, v_margin, coord, height - v_margin - 1); int width, height; layout->get_pixel_size (width, height); window->draw_layout(white, coord - width / 2, v_margin / 2, layout); } } void FFTGraph::redraw() { Glib::Mutex::Lock lm (_a_window->track_list_lock); draw_scales(get_window()); if (_a_window == 0) return; if (!_a_window->track_list_ready) return; cairo_t *cr; cr = gdk_cairo_create(GDK_DRAWABLE(get_window()->gobj())); cairo_set_line_width(cr, 1.5); cairo_translate(cr, (float)v_margin + 1.0, (float)h_margin); // Find "session wide" min & max float min = 1000000000000.0; float max = -1000000000000.0; TreeNodeChildren track_rows = _a_window->track_list.get_model()->children(); for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) { TreeModel::Row row = *i; FFTResult *res = row[_a_window->tlcols.graph]; // disregard fft analysis from empty signals if (res->minimum() == res->maximum()) { continue; } if ( res->minimum() < min) { min = res->minimum(); } if ( res->maximum() > max) { max = res->maximum(); } } if (!_show_normalized) { min = -150.0f; max = 0.0f; } //int graph_height = height - 2 * h_margin; float fft_pane_size_w = (float)(width - 2*v_margin) - 1.0; float fft_pane_size_h = (float)(height - 2*h_margin); double pixels_per_db = (double)fft_pane_size_h / (double)(max - min); cairo_rectangle(cr, 0.0, 0.0, fft_pane_size_w, fft_pane_size_h); cairo_clip(cr); for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) { TreeModel::Row row = *i; // don't show graphs for tracks which are deselected if (!row[_a_window->tlcols.visible]) { continue; } FFTResult *res = row[_a_window->tlcols.graph]; // don't show graphs for empty signals if (res->minimum() == res->maximum()) { continue; } float mpp; if (_show_minmax) { mpp = -1000000.0; cairo_set_source_rgba(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p(), 0.30); cairo_move_to(cr, 0.5f + (float)_logScale[0], 0.5f + (float)( fft_pane_size_h - (int)floor( (res->maxAt(0) - min) * pixels_per_db) )); // Draw the line of maximum values for (int x = 1; x < res->length(); x++) { if (res->maxAt(x) > mpp) mpp = res->maxAt(x); mpp = fmax(mpp, min); mpp = fmin(mpp, max); // If the next point on the log scale is at the same location, // don't draw yet if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) { continue; } float X = 0.5f + (float)_logScale[x]; float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) ); cairo_line_to(cr, X, Y); mpp = -1000000.0; } mpp = +10000000.0; // Draw back to the start using the minimum value for (int x = res->length()-1; x >= 0; x--) { if (res->minAt(x) < mpp) mpp = res->minAt(x); mpp = fmax(mpp, min); mpp = fmin(mpp, max); // If the next point on the log scale is at the same location, // don't draw yet if (x - 1 > 0 && _logScale[x] == _logScale[x - 1]) { continue; } float X = 0.5f + (float)_logScale[x]; float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) ); cairo_line_to(cr, X, Y ); mpp = +10000000.0; } cairo_close_path(cr); cairo_fill(cr); } // Set color from track cairo_set_source_rgb(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p()); mpp = -1000000.0; cairo_move_to(cr, 0.5, fft_pane_size_h-0.5); for (int x = 0; x < res->length(); x++) { if (res->avgAt(x) > mpp) mpp = res->avgAt(x); mpp = fmax(mpp, min); mpp = fmin(mpp, max); // If the next point on the log scale is at the same location, // don't draw yet if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) { continue; } cairo_line_to(cr, 0.5f + (float)_logScale[x], 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) )); mpp = -1000000.0; } cairo_stroke(cr); } cairo_destroy(cr); } void FFTGraph::on_size_request(Gtk::Requisition* requisition) { width = max(requisition->width, minScaleWidth + h_margin * 2); height = max(requisition->height, minScaleHeight + 2 + v_margin * 2); update_size(); requisition->width = width;; requisition->height = height; } void FFTGraph::on_size_allocate(Gtk::Allocation & alloc) { width = alloc.get_width(); height = alloc.get_height(); update_size(); DrawingArea::on_size_allocate (alloc); } void FFTGraph::update_size() { currentScaleWidth = width - h_margin*2; currentScaleHeight = height - 2 - v_margin*2; float SR = 44100; float FFT_START = SR/(double)_dataSize; float FFT_END = SR/2.0; float FFT_RANGE = log( FFT_END / FFT_START); float pixel = 0; for (int i = 0; i < _dataSize; i++) { float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize); float freq_at_pixel; pixel--; do { pixel++; freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) ); } while (freq_at_bin > freq_at_pixel); _logScale[i] = (int)floor(pixel); } }