/* Copyright (C) 2002-2003 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. $Id$ */ #include #include #include #include #include #include #include #include #include "simplerect.h" #include "automation_line.h" #include "rgb_macros.h" #include "ardour_ui.h" #include "public_editor.h" #include "utils.h" #include "selection.h" #include "time_axis_view.h" #include "point_selection.h" #include "automation_selectable.h" #include "automation_time_axis.h" #include "public_editor.h" #include #include "i18n.h" using namespace std; using namespace sigc; using namespace ARDOUR; using namespace PBD; using namespace Editing; using namespace Gnome; // for Canvas ControlPoint::ControlPoint (AutomationLine& al) : line (al) { model = al.the_list().end(); view_index = 0; can_slide = true; _x = 0; _y = 0; _shape = Full; _size = 4.0; selected = false; item = new Canvas::SimpleRect (line.canvas_group()); item->property_draw() = true; item->property_fill() = false; item->property_fill_color_rgba() = color_map[cControlPointFill]; item->property_outline_color_rgba() = color_map[cControlPointOutline]; item->property_outline_pixels() = 1; item->set_data ("control_point", this); item->signal_event().connect (mem_fun (this, &ControlPoint::event_handler)); hide (); set_visible (false); } ControlPoint::ControlPoint (const ControlPoint& other, bool dummy_arg_to_force_special_copy_constructor) : line (other.line) { if (&other == this) { return; } model = other.model; view_index = other.view_index; can_slide = other.can_slide; _x = other._x; _y = other._y; _shape = other._shape; _size = other._size; selected = false; item = new Canvas::SimpleRect (line.canvas_group()); item->property_fill() = false; item->property_outline_color_rgba() = color_map[cEnteredControlPointOutline]; item->property_outline_pixels() = 1; /* NOTE: no event handling in copied ControlPoints */ hide (); set_visible (false); } ControlPoint::~ControlPoint () { delete item; } bool ControlPoint::event_handler (GdkEvent* event) { return PublicEditor::instance().canvas_control_point_event (event, item, this); } void ControlPoint::hide () { item->hide(); } void ControlPoint::show() { item->show(); } void ControlPoint::set_visible (bool yn) { item->property_draw() = (gboolean) yn; } void ControlPoint::reset (double x, double y, AutomationList::iterator mi, uint32_t vi, ShapeType shape) { model = mi; view_index = vi; move_to (x, y, shape); } void ControlPoint::show_color (bool entered, bool hide_too) { if (entered) { if (selected) { item->property_outline_color_rgba() = color_map[cEnteredControlPointSelected]; set_visible(true); } else { item->property_outline_color_rgba() = color_map[cEnteredControlPoint]; if (hide_too) { set_visible(false); } } } else { if (selected) { item->property_outline_color_rgba() = color_map[cControlPointSelected]; set_visible(true); } else { item->property_outline_color_rgba() = color_map[cControlPoint]; if (hide_too) { set_visible(false); } } } } void ControlPoint::set_size (double sz) { _size = sz; #if 0 if (_size > 6.0) { item->property_fill() = (gboolean) TRUE; } else { item->property_fill() = (gboolean) FALSE; } #endif move_to (_x, _y, _shape); } void ControlPoint::move_to (double x, double y, ShapeType shape) { double x1 = 0; double x2 = 0; double half_size = rint(_size/2.0); switch (shape) { case Full: x1 = x - half_size; x2 = x + half_size; break; case Start: x1 = x; x2 = x + half_size; break; case End: x1 = x - half_size; x2 = x; break; } item->property_x1() = x1; item->property_x2() = x2; item->property_y1() = y - half_size; item->property_y2() = y + half_size; _x = x; _y = y; _shape = shape; } /*****/ AutomationLine::AutomationLine (const string & name, TimeAxisView& tv, ArdourCanvas::Group& parent, AutomationList& al) : trackview (tv), _name (name), alist (al), _parent_group (parent) { points_visible = false; update_pending = false; _vc_uses_gain_mapping = false; no_draw = false; _visible = true; terminal_points_can_slide = true; _height = 0; group = new ArdourCanvas::Group (parent); group->property_x() = 0.0; group->property_y() = 0.0; line = new ArdourCanvas::Line (*group); line->property_width_pixels() = (guint)1; line->set_data ("line", this); line->signal_event().connect (mem_fun (*this, &AutomationLine::event_handler)); alist.StateChanged.connect (mem_fun(*this, &AutomationLine::list_changed)); trackview.session().register_with_memento_command_factory(alist.id(), this); } AutomationLine::~AutomationLine () { vector_delete (&control_points); delete group; } bool AutomationLine::event_handler (GdkEvent* event) { return PublicEditor::instance().canvas_line_event (event, line, this); } void AutomationLine::queue_reset () { if (!update_pending) { update_pending = true; Gtkmm2ext::UI::instance()->call_slot (mem_fun(*this, &AutomationLine::reset)); } } void AutomationLine::show () { line->show(); if (points_visible) { for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { (*i)->show (); } } _visible = true; } void AutomationLine::hide () { line->hide(); for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { (*i)->hide(); } _visible = false; } double AutomationLine::control_point_box_size () { if (_height > TimeAxisView::hLarger) { return 8.0; } else if (_height > (guint32) TimeAxisView::hNormal) { return 6.0; } return 4.0; } void AutomationLine::set_height (guint32 h) { if (h != _height) { _height = h; double bsz = control_point_box_size(); for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { (*i)->set_size (bsz); } reset (); } } void AutomationLine::set_line_color (uint32_t color) { _line_color = color; line->property_fill_color_rgba() = color; } void AutomationLine::set_verbose_cursor_uses_gain_mapping (bool yn) { if (yn != _vc_uses_gain_mapping) { _vc_uses_gain_mapping = yn; reset (); } } ControlPoint* AutomationLine::nth (uint32_t n) { if (n < control_points.size()) { return control_points[n]; } else { return 0; } } void AutomationLine::modify_view (ControlPoint& cp, double x, double y, bool with_push) { modify_view_point (cp, x, y, with_push); update_line (); } void AutomationLine::modify_view_point (ControlPoint& cp, double x, double y, bool with_push) { double delta = 0.0; uint32_t last_movable = UINT_MAX; double x_limit = DBL_MAX; /* this just changes the current view. it does not alter the model in any way at all. */ /* clamp y-coord appropriately. y is supposed to be a normalized fraction (0.0-1.0), and needs to be converted to a canvas unit distance. */ y = max (0.0, y); y = min (1.0, y); y = _height - (y * _height); if (cp.can_slide) { /* x-coord cannot move beyond adjacent points or the start/end, and is already in frames. it needs to be converted to canvas units. */ x = trackview.editor.frame_to_unit (x); /* clamp x position using view coordinates */ ControlPoint *before; ControlPoint *after; if (cp.view_index) { before = nth (cp.view_index - 1); x = max (x, before->get_x()+1.0); } else { before = &cp; } if (!with_push) { if (cp.view_index < control_points.size() - 1) { after = nth (cp.view_index + 1); /*if it is a "spike" leave the x alone */ if (after->get_x() - before->get_x() < 2) { x = cp.get_x(); } else { x = min (x, after->get_x()-1.0); } } else { after = &cp; } } else { ControlPoint* after; /* find the first point that can't move */ for (uint32_t n = cp.view_index + 1; (after = nth (n)) != 0; ++n) { if (!after->can_slide) { x_limit = after->get_x() - 1.0; last_movable = after->view_index; break; } } delta = x - cp.get_x(); } } else { /* leave the x-coordinate alone */ x = trackview.editor.frame_to_unit ((*cp.model)->when); } if (!with_push) { cp.move_to (x, y, ControlPoint::Full); reset_line_coords (cp); } else { uint32_t limit = min (control_points.size(), (size_t)last_movable); /* move the current point to wherever the user told it to go, subject to x_limit. */ cp.move_to (min (x, x_limit), y, ControlPoint::Full); reset_line_coords (cp); /* now move all subsequent control points, to reflect the motion. */ for (uint32_t i = cp.view_index + 1; i < limit; ++i) { ControlPoint *p = nth (i); double new_x; if (p->can_slide) { new_x = min (p->get_x() + delta, x_limit); p->move_to (new_x, p->get_y(), ControlPoint::Full); reset_line_coords (*p); } } } } void AutomationLine::reset_line_coords (ControlPoint& cp) { line_points[cp.view_index].set_x (cp.get_x()); line_points[cp.view_index].set_y (cp.get_y()); } void AutomationLine::update_line () { line->property_points() = line_points; } void AutomationLine::sync_model_with_view_line (uint32_t start, uint32_t end) { ControlPoint *p; update_pending = true; for (uint32_t i = start; i <= end; ++i) { p = nth(i); sync_model_with_view_point(*p); } } void AutomationLine::model_representation (ControlPoint& cp, ModelRepresentation& mr) { /* part one: find out where the visual control point is. initial results are in canvas units. ask the line to convert them to something relevant. */ mr.xval = (nframes_t) floor (cp.get_x()); mr.yval = 1.0 - (cp.get_y() / _height); /* if xval has not changed, set it directly from the model to avoid rounding errors */ if (mr.xval == trackview.editor.frame_to_unit((*cp.model)->when)) { mr.xval = (nframes_t) (*cp.model)->when; } else { mr.xval = trackview.editor.unit_to_frame (mr.xval); } /* virtual call: this will do the right thing for whatever particular type of line we are. */ view_to_model_y (mr.yval); /* part 2: find out where the model point is now */ mr.xpos = (nframes_t) (*cp.model)->when; mr.ypos = (*cp.model)->value; /* part 3: get the position of the visual control points before and after us. */ ControlPoint* before; ControlPoint* after; if (cp.view_index) { before = nth (cp.view_index - 1); } else { before = 0; } after = nth (cp.view_index + 1); if (before) { mr.xmin = (nframes_t) (*before->model)->when; mr.ymin = (*before->model)->value; mr.start = before->model; ++mr.start; } else { mr.xmin = mr.xpos; mr.ymin = mr.ypos; mr.start = cp.model; } if (after) { mr.end = after->model; } else { mr.xmax = mr.xpos; mr.ymax = mr.ypos; mr.end = cp.model; ++mr.end; } } void AutomationLine::sync_model_from (ControlPoint& cp) { ControlPoint* p; uint32_t lasti; sync_model_with_view_point (cp); /* we might have moved all points after `cp' by some amount if we pressed the with_push modifyer some of the time during the drag so all subsequent points have to be resynced */ lasti = control_points.size() - 1; p = nth (lasti); update_pending = true; while (p != &cp && lasti) { sync_model_with_view_point (*p); --lasti; p = nth (lasti); } } void AutomationLine::sync_model_with_view_point (ControlPoint& cp) { ModelRepresentation mr; double ydelta; model_representation (cp, mr); /* part 4: how much are we changing the central point by */ ydelta = mr.yval - mr.ypos; /* IMPORTANT: changing the model when the x-coordinate changes may invalidate the iterators that we are using. this means that we have to change the points before+after the one corresponding to the visual CP first (their x-coordinate doesn't change). then we change the "main" point. apply the full change to the central point, and interpolate in each direction to cover all model points represented by the control point. */ /* part 5: change all points before the primary point */ for (AutomationList::iterator i = mr.start; i != cp.model; ++i) { double delta; delta = ydelta * ((*i)->when - mr.xmin) / (mr.xpos - mr.xmin); /* x-coordinate (generally time) stays where it is, y-coordinate moves by a certain amount. */ update_pending = true; change_model (i, (*i)->when, mr.yval + delta); } /* part 6: change later points */ AutomationList::iterator i = cp.model; ++i; while (i != mr.end) { double delta; delta = ydelta * (mr.xmax - (*i)->when) / (mr.xmax - mr.xpos); /* x-coordinate (generally time) stays where it is, y-coordinate moves by a certain amount. */ update_pending = true; change_model (i, (*i)->when, (*i)->value + delta); ++i; } /* part 7: change the primary point */ update_pending = true; change_model (cp.model, mr.xval, mr.yval); } void AutomationLine::determine_visible_control_points (ALPoints& points) { uint32_t view_index, pi, n; AutomationList::iterator model; uint32_t npoints; double last_control_point_x = 0.0; double last_control_point_y = 0.0; uint32_t this_rx = 0; uint32_t prev_rx = 0; uint32_t this_ry = 0; uint32_t prev_ry = 0; double* slope; uint32_t box_size; uint32_t cpsize; /* hide all existing points, and the line */ cpsize = 0; for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { (*i)->hide(); ++cpsize; } line->hide (); if (points.empty()) { return; } npoints = points.size(); /* compute derivative/slope for the entire line */ slope = new double[npoints]; for (n = 0; n < npoints - 1; ++n) { double xdelta = points[n+1].x - points[n].x; double ydelta = points[n+1].y - points[n].y; slope[n] = ydelta/xdelta; } box_size = (uint32_t) control_point_box_size (); /* read all points and decide which ones to show as control points */ view_index = 0; for (model = alist.begin(), pi = 0; pi < npoints; ++model, ++pi) { double tx = points[pi].x; double ty = points[pi].y; /* now ensure that the control_points vector reflects the current curve state, but don't plot control points too close together. also, don't plot a series of points all with the same value. always plot the first and last points, of course. */ if (invalid_point (points, pi)) { /* for some reason, we are supposed to ignore this point, but still keep track of the model index. */ continue; } if (pi > 0 && pi < npoints - 1) { if (slope[pi] == slope[pi-1]) { /* no reason to display this point */ continue; } } /* need to round here. the ultimate coordinates are integer pixels, so tiny deltas in the coords will be eliminated and we end up with "colinear" line segments. since the line rendering code in libart doesn't like this very much, we eliminate them here. don't do this for the first and last points. */ this_rx = (uint32_t) rint (tx); this_ry = (uint32_t) rint (ty); if (view_index && pi != npoints && /* not the first, not the last */ /* same point or too close to the last one horizontally */ (((this_rx == prev_rx) && (this_ry == prev_ry)) || ((this_rx - prev_rx) < (box_size + 2)))) { continue; } /* ok, we should display this point */ if (view_index >= cpsize) { /* make sure we have enough control points */ ControlPoint* ncp = new ControlPoint (*this); ncp->set_size (box_size); control_points.push_back (ncp); ++cpsize; } ControlPoint::ShapeType shape; if (!terminal_points_can_slide) { if (pi == 0) { control_points[view_index]->can_slide = false; if (tx == 0) { shape = ControlPoint::Start; } else { shape = ControlPoint::Full; } } else if (pi == npoints - 1) { control_points[view_index]->can_slide = false; shape = ControlPoint::End; } else { control_points[view_index]->can_slide = true; shape = ControlPoint::Full; } } else { control_points[view_index]->can_slide = true; shape = ControlPoint::Full; } last_control_point_x = tx; last_control_point_y = ty; control_points[view_index]->reset (tx, ty, model, view_index, shape); prev_rx = this_rx; prev_ry = this_ry; /* finally, control visibility */ if (_visible && points_visible) { control_points[view_index]->show (); control_points[view_index]->set_visible (true); } else { if (!points_visible) { control_points[view_index]->set_visible (false); } } view_index++; } /* discard extra CP's to avoid confusing ourselves */ while (control_points.size() > view_index) { ControlPoint* cp = control_points.back(); control_points.pop_back (); delete cp; } if (!terminal_points_can_slide) { control_points.back()->can_slide = false; } delete [] slope; if (view_index > 1) { npoints = view_index; /* reset the line coordinates */ while (line_points.size() < npoints) { line_points.push_back (Art::Point (0,0)); } while (line_points.size() > npoints) { line_points.pop_back (); } for (view_index = 0; view_index < npoints; ++view_index) { line_points[view_index].set_x (control_points[view_index]->get_x()); line_points[view_index].set_y (control_points[view_index]->get_y()); } line->property_points() = line_points; if (_visible) { line->show (); } } set_selected_points (trackview.editor.get_selection().points); } string AutomationLine::get_verbose_cursor_string (float fraction) { char buf[32]; if (_vc_uses_gain_mapping) { if (fraction == 0.0) { snprintf (buf, sizeof (buf), "-inf dB"); } else { snprintf (buf, sizeof (buf), "%.1fdB", coefficient_to_dB (slider_position_to_gain (fraction))); } } else { snprintf (buf, sizeof (buf), "%.2f", fraction); } return buf; } bool AutomationLine::invalid_point (ALPoints& p, uint32_t index) { return p[index].x == max_frames && p[index].y == DBL_MAX; } void AutomationLine::invalidate_point (ALPoints& p, uint32_t index) { p[index].x = max_frames; p[index].y = DBL_MAX; } void AutomationLine::start_drag (ControlPoint* cp, float fraction) { if (trackview.editor.current_session() == 0) { /* how? */ return; } string str; if (cp) { str = _("automation event move"); } else { str = _("automation range drag"); } trackview.editor.current_session()->begin_reversible_command (str); trackview.editor.current_session()->add_command (new MementoCommand(*this, &get_state(), 0)); first_drag_fraction = fraction; last_drag_fraction = fraction; drags = 0; } void AutomationLine::point_drag (ControlPoint& cp, nframes_t x, float fraction, bool with_push) { modify_view (cp, x, fraction, with_push); drags++; } void AutomationLine::line_drag (uint32_t i1, uint32_t i2, float fraction, bool with_push) { double ydelta = fraction - last_drag_fraction; last_drag_fraction = fraction; line_drag_cp1 = i1; line_drag_cp2 = i2; ControlPoint *cp; for (uint32_t i = i1 ; i <= i2; i++) { cp = nth (i); modify_view_point (*cp, trackview.editor.unit_to_frame (cp->get_x()), ((_height - cp->get_y()) /_height) + ydelta, with_push); } update_line (); drags++; } void AutomationLine::end_drag (ControlPoint* cp) { if (drags) { if (cp) { sync_model_from (*cp); } else { sync_model_with_view_line (line_drag_cp1, line_drag_cp2); } update_pending = false; trackview.editor.current_session()->add_command (new MementoCommand(*this, 0, &get_state())); trackview.editor.current_session()->commit_reversible_command (); trackview.editor.current_session()->set_dirty (); } } bool AutomationLine::control_points_adjacent (double xval, uint32_t & before, uint32_t& after) { ControlPoint *bcp = 0; ControlPoint *acp = 0; double unit_xval; /* xval is in frames */ unit_xval = trackview.editor.frame_to_unit (xval); for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { if ((*i)->get_x() <= unit_xval) { if (!bcp || (*i)->get_x() > bcp->get_x()) { bcp = *i; before = bcp->view_index; } } else if ((*i)->get_x() > unit_xval) { acp = *i; after = acp->view_index; break; } } return bcp && acp; } bool AutomationLine::is_last_point (ControlPoint& cp) { ModelRepresentation mr; model_representation (cp, mr); // If the list is not empty, and the point is the last point in the list if (!alist.empty() && mr.end == alist.end()) { return true; } return false; } bool AutomationLine::is_first_point (ControlPoint& cp) { ModelRepresentation mr; model_representation (cp, mr); // If the list is not empty, and the point is the first point in the list if (!alist.empty() && mr.start == alist.begin()) { return true; } return false; } // This is copied into AudioRegionGainLine void AutomationLine::remove_point (ControlPoint& cp) { ModelRepresentation mr; model_representation (cp, mr); trackview.editor.current_session()->begin_reversible_command (_("remove control point")); XMLNode &before = get_state(); alist.erase (mr.start, mr.end); trackview.editor.current_session()->add_command(new MementoCommand(*this, &before, &get_state())); trackview.editor.current_session()->commit_reversible_command (); trackview.editor.current_session()->set_dirty (); } void AutomationLine::get_selectables (nframes_t& start, nframes_t& end, double botfrac, double topfrac, list& results) { double top; double bot; nframes_t nstart; nframes_t nend; bool collecting = false; /* Curse X11 and its inverted coordinate system! */ bot = (1.0 - topfrac) * _height; top = (1.0 - botfrac) * _height; nstart = max_frames; nend = 0; for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { nframes_t when = (nframes_t) (*(*i)->model)->when; if (when >= start && when <= end) { if ((*i)->get_y() >= bot && (*i)->get_y() <= top) { (*i)->show(); (*i)->set_visible(true); collecting = true; nstart = min (nstart, when); nend = max (nend, when); } else { if (collecting) { results.push_back (new AutomationSelectable (nstart, nend, botfrac, topfrac, trackview)); collecting = false; nstart = max_frames; nend = 0; } } } } if (collecting) { results.push_back (new AutomationSelectable (nstart, nend, botfrac, topfrac, trackview)); } } void AutomationLine::get_inverted_selectables (Selection&, list& results) { // hmmm .... } void AutomationLine::set_selected_points (PointSelection& points) { double top; double bot; for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { (*i)->selected = false; } if (points.empty()) { goto out; } for (PointSelection::iterator r = points.begin(); r != points.end(); ++r) { if (&(*r).track != &trackview) { continue; } /* Curse X11 and its inverted coordinate system! */ bot = (1.0 - (*r).high_fract) * _height; top = (1.0 - (*r).low_fract) * _height; for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { double rstart, rend; rstart = trackview.editor.frame_to_unit ((*r).start); rend = trackview.editor.frame_to_unit ((*r).end); if ((*i)->get_x() >= rstart && (*i)->get_x() <= rend) { if ((*i)->get_y() >= bot && (*i)->get_y() <= top) { (*i)->selected = true; } } } } out: for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { (*i)->show_color (false, !points_visible); } } void AutomationLine::show_selection () { TimeSelection& time (trackview.editor.get_selection().time); // cerr << "show selection\n"; for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { (*i)->selected = false; for (list::iterator r = time.begin(); r != time.end(); ++r) { double rstart, rend; rstart = trackview.editor.frame_to_unit ((*r).start); rend = trackview.editor.frame_to_unit ((*r).end); if ((*i)->get_x() >= rstart && (*i)->get_x() <= rend) { (*i)->selected = true; break; } } (*i)->show_color (false, !points_visible); } } void AutomationLine::hide_selection () { // cerr << "hide selection\n"; // show_selection (); } void AutomationLine::list_changed (Change ignored) { queue_reset (); } void AutomationLine::reset_callback (const AutomationList& events) { ALPoints tmp_points; uint32_t npoints = events.size(); if (npoints == 0) { for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { delete *i; } control_points.clear (); line->hide(); return; } AutomationList::const_iterator ai; for (ai = events.const_begin(); ai != events.const_end(); ++ai) { double translated_y = (*ai)->value; model_to_view_y (translated_y); tmp_points.push_back (ALPoint (trackview.editor.frame_to_unit ((*ai)->when), _height - (translated_y * _height))); } determine_visible_control_points (tmp_points); } void AutomationLine::reset () { update_pending = false; if (no_draw) { return; } alist.apply_to_points (*this, &AutomationLine::reset_callback); } void AutomationLine::clear () { /* parent must create command */ XMLNode &before = get_state(); alist.clear(); trackview.editor.current_session()->add_command (new MementoCommand(*this, &before, &get_state())); trackview.editor.current_session()->commit_reversible_command (); trackview.editor.current_session()->set_dirty (); } void AutomationLine::change_model (AutomationList::iterator i, double x, double y) { alist.modify (i, (nframes_t) x, y); } void AutomationLine::change_model_range (AutomationList::iterator start, AutomationList::iterator end, double xdelta, float ydelta) { alist.move_range (start, end, xdelta, ydelta); } void AutomationLine::show_all_control_points () { points_visible = true; for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { (*i)->show (); (*i)->set_visible (true); } } void AutomationLine::hide_all_but_selected_control_points () { points_visible = false; for (vector::iterator i = control_points.begin(); i != control_points.end(); ++i) { if (!(*i)->selected) { (*i)->set_visible (false); } } } XMLNode & AutomationLine::get_state (void) { /* function as a proxy for the model */ return alist.get_state(); } int AutomationLine::set_state (const XMLNode &node) { /* function as a proxy for the model */ return alist.set_state (node); }