summaryrefslogtreecommitdiff
path: root/libs/qm-dsp/dsp/rateconversion/Resampler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/qm-dsp/dsp/rateconversion/Resampler.cpp')
-rw-r--r--libs/qm-dsp/dsp/rateconversion/Resampler.cpp416
1 files changed, 416 insertions, 0 deletions
diff --git a/libs/qm-dsp/dsp/rateconversion/Resampler.cpp b/libs/qm-dsp/dsp/rateconversion/Resampler.cpp
new file mode 100644
index 0000000000..f0598cab2c
--- /dev/null
+++ b/libs/qm-dsp/dsp/rateconversion/Resampler.cpp
@@ -0,0 +1,416 @@
+/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
+/*
+ QM DSP Library
+
+ Centre for Digital Music, Queen Mary, University of London.
+ This file by Chris Cannam.
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version. See the file
+ COPYING included with this distribution for more information.
+*/
+
+#include "Resampler.h"
+
+#include "maths/MathUtilities.h"
+#include "base/KaiserWindow.h"
+#include "base/SincWindow.h"
+#include "thread/Thread.h"
+
+#include <iostream>
+#include <vector>
+#include <map>
+#include <cassert>
+
+using std::vector;
+using std::map;
+using std::cerr;
+using std::endl;
+
+//#define DEBUG_RESAMPLER 1
+//#define DEBUG_RESAMPLER_VERBOSE 1
+
+Resampler::Resampler(int sourceRate, int targetRate) :
+ m_sourceRate(sourceRate),
+ m_targetRate(targetRate)
+{
+ initialise(100, 0.02);
+}
+
+Resampler::Resampler(int sourceRate, int targetRate,
+ double snr, double bandwidth) :
+ m_sourceRate(sourceRate),
+ m_targetRate(targetRate)
+{
+ initialise(snr, bandwidth);
+}
+
+Resampler::~Resampler()
+{
+ delete[] m_phaseData;
+}
+
+// peakToPole -> length -> beta -> window
+static map<double, map<int, map<double, vector<double> > > >
+knownFilters;
+
+static Mutex
+knownFilterMutex;
+
+void
+Resampler::initialise(double snr, double bandwidth)
+{
+ int higher = std::max(m_sourceRate, m_targetRate);
+ int lower = std::min(m_sourceRate, m_targetRate);
+
+ m_gcd = MathUtilities::gcd(lower, higher);
+ m_peakToPole = higher / m_gcd;
+
+ if (m_targetRate < m_sourceRate) {
+ // antialiasing filter, should be slightly below nyquist
+ m_peakToPole = m_peakToPole / (1.0 - bandwidth/2.0);
+ }
+
+ KaiserWindow::Parameters params =
+ KaiserWindow::parametersForBandwidth(snr, bandwidth, higher / m_gcd);
+
+ params.length =
+ (params.length % 2 == 0 ? params.length + 1 : params.length);
+
+ params.length =
+ (params.length > 200001 ? 200001 : params.length);
+
+ m_filterLength = params.length;
+
+ vector<double> filter;
+ knownFilterMutex.lock();
+
+ if (knownFilters[m_peakToPole][m_filterLength].find(params.beta) ==
+ knownFilters[m_peakToPole][m_filterLength].end()) {
+
+ KaiserWindow kw(params);
+ SincWindow sw(m_filterLength, m_peakToPole * 2);
+
+ filter = vector<double>(m_filterLength, 0.0);
+ for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
+ sw.cut(filter.data());
+ kw.cut(filter.data());
+
+ knownFilters[m_peakToPole][m_filterLength][params.beta] = filter;
+ }
+
+ filter = knownFilters[m_peakToPole][m_filterLength][params.beta];
+ knownFilterMutex.unlock();
+
+ int inputSpacing = m_targetRate / m_gcd;
+ int outputSpacing = m_sourceRate / m_gcd;
+
+#ifdef DEBUG_RESAMPLER
+ cerr << "resample " << m_sourceRate << " -> " << m_targetRate
+ << ": inputSpacing " << inputSpacing << ", outputSpacing "
+ << outputSpacing << ": filter length " << m_filterLength
+ << endl;
+#endif
+
+ // Now we have a filter of (odd) length flen in which the lower
+ // sample rate corresponds to every n'th point and the higher rate
+ // to every m'th where n and m are higher and lower rates divided
+ // by their gcd respectively. So if x coordinates are on the same
+ // scale as our filter resolution, then source sample i is at i *
+ // (targetRate / gcd) and target sample j is at j * (sourceRate /
+ // gcd).
+
+ // To reconstruct a single target sample, we want a buffer (real
+ // or virtual) of flen values formed of source samples spaced at
+ // intervals of (targetRate / gcd), in our example case 3. This
+ // is initially formed with the first sample at the filter peak.
+ //
+ // 0 0 0 0 a 0 0 b 0
+ //
+ // and of course we have our filter
+ //
+ // f1 f2 f3 f4 f5 f6 f7 f8 f9
+ //
+ // We take the sum of products of non-zero values from this buffer
+ // with corresponding values in the filter
+ //
+ // a * f5 + b * f8
+ //
+ // Then we drop (sourceRate / gcd) values, in our example case 4,
+ // from the start of the buffer and fill until it has flen values
+ // again
+ //
+ // a 0 0 b 0 0 c 0 0
+ //
+ // repeat to reconstruct the next target sample
+ //
+ // a * f1 + b * f4 + c * f7
+ //
+ // and so on.
+ //
+ // Above I said the buffer could be "real or virtual" -- ours is
+ // virtual. We don't actually store all the zero spacing values,
+ // except for padding at the start; normally we store only the
+ // values that actually came from the source stream, along with a
+ // phase value that tells us how many virtual zeroes there are at
+ // the start of the virtual buffer. So the two examples above are
+ //
+ // 0 a b [ with phase 1 ]
+ // a b c [ with phase 0 ]
+ //
+ // Having thus broken down the buffer so that only the elements we
+ // need to multiply are present, we can also unzip the filter into
+ // every-nth-element subsets at each phase, allowing us to do the
+ // filter multiplication as a simply vector multiply. That is, rather
+ // than store
+ //
+ // f1 f2 f3 f4 f5 f6 f7 f8 f9
+ //
+ // we store separately
+ //
+ // f1 f4 f7
+ // f2 f5 f8
+ // f3 f6 f9
+ //
+ // Each time we complete a multiply-and-sum, we need to work out
+ // how many (real) samples to drop from the start of our buffer,
+ // and how many to add at the end of it for the next multiply. We
+ // know we want to drop enough real samples to move along by one
+ // computed output sample, which is our outputSpacing number of
+ // virtual buffer samples. Depending on the relationship between
+ // input and output spacings, this may mean dropping several real
+ // samples, one real sample, or none at all (and simply moving to
+ // a different "phase").
+
+ m_phaseData = new Phase[inputSpacing];
+
+ for (int phase = 0; phase < inputSpacing; ++phase) {
+
+ Phase p;
+
+ p.nextPhase = phase - outputSpacing;
+ while (p.nextPhase < 0) p.nextPhase += inputSpacing;
+ p.nextPhase %= inputSpacing;
+
+ p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
+ / inputSpacing));
+
+ int filtZipLength = int(ceil(double(m_filterLength - phase)
+ / inputSpacing));
+
+ for (int i = 0; i < filtZipLength; ++i) {
+ p.filter.push_back(filter[i * inputSpacing + phase]);
+ }
+
+ m_phaseData[phase] = p;
+ }
+
+#ifdef DEBUG_RESAMPLER
+ int cp = 0;
+ int totDrop = 0;
+ for (int i = 0; i < inputSpacing; ++i) {
+ cerr << "phase = " << cp << ", drop = " << m_phaseData[cp].drop
+ << ", filter length = " << m_phaseData[cp].filter.size()
+ << ", next phase = " << m_phaseData[cp].nextPhase << endl;
+ totDrop += m_phaseData[cp].drop;
+ cp = m_phaseData[cp].nextPhase;
+ }
+ cerr << "total drop = " << totDrop << endl;
+#endif
+
+ // The May implementation of this uses a pull model -- we ask the
+ // resampler for a certain number of output samples, and it asks
+ // its source stream for as many as it needs to calculate
+ // those. This means (among other things) that the source stream
+ // can be asked for enough samples up-front to fill the buffer
+ // before the first output sample is generated.
+ //
+ // In this implementation we're using a push model in which a
+ // certain number of source samples is provided and we're asked
+ // for as many output samples as that makes available. But we
+ // can't return any samples from the beginning until half the
+ // filter length has been provided as input. This means we must
+ // either return a very variable number of samples (none at all
+ // until the filter fills, then half the filter length at once) or
+ // else have a lengthy declared latency on the output. We do the
+ // latter. (What do other implementations do?)
+ //
+ // We want to make sure the first "real" sample will eventually be
+ // aligned with the centre sample in the filter (it's tidier, and
+ // easier to do diagnostic calculations that way). So we need to
+ // pick the initial phase and buffer fill accordingly.
+ //
+ // Example: if the inputSpacing is 2, outputSpacing is 3, and
+ // filter length is 7,
+ //
+ // x x x x a b c ... input samples
+ // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
+ // i j k l ... output samples
+ // [--------|--------] <- filter with centre mark
+ //
+ // Let h be the index of the centre mark, here 3 (generally
+ // int(filterLength/2) for odd-length filters).
+ //
+ // The smallest n such that h + n * outputSpacing > filterLength
+ // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
+ // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
+ // phase is 1.
+ //
+ // To achieve our n, we need to pre-fill the "virtual" buffer with
+ // 4 zero samples: the x's above. This is int((h + n *
+ // outputSpacing) / inputSpacing). It's the phase that makes this
+ // buffer get dealt with in such a way as to give us an effective
+ // index for sample a of 9 rather than 8 or 10 or whatever.
+ //
+ // This gives us output latency of 2 (== n), i.e. output samples i
+ // and j will appear before the one in which input sample a is at
+ // the centre of the filter.
+
+ int h = int(m_filterLength / 2);
+ int n = ceil(double(m_filterLength - h) / outputSpacing);
+
+ m_phase = (h + n * outputSpacing) % inputSpacing;
+
+ int fill = (h + n * outputSpacing) / inputSpacing;
+
+ m_latency = n;
+
+ m_buffer = vector<double>(fill, 0);
+ m_bufferOrigin = 0;
+
+#ifdef DEBUG_RESAMPLER
+ cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
+ << ", latency " << m_latency << endl;
+#endif
+}
+
+double
+Resampler::reconstructOne()
+{
+ Phase &pd = m_phaseData[m_phase];
+ double v = 0.0;
+ int n = pd.filter.size();
+
+ assert(n + m_bufferOrigin <= (int)m_buffer.size());
+
+ const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
+ const double *const __restrict__ filt = pd.filter.data();
+
+ for (int i = 0; i < n; ++i) {
+ // NB gcc can only vectorize this with -ffast-math
+ v += buf[i] * filt[i];
+ }
+
+ m_bufferOrigin += pd.drop;
+ m_phase = pd.nextPhase;
+ return v;
+}
+
+int
+Resampler::process(const double *src, double *dst, int n)
+{
+ for (int i = 0; i < n; ++i) {
+ m_buffer.push_back(src[i]);
+ }
+
+ int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
+ int outidx = 0;
+
+#ifdef DEBUG_RESAMPLER
+ cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << endl;
+#endif
+
+ double scaleFactor = (double(m_targetRate) / m_gcd) / m_peakToPole;
+
+ while (outidx < maxout &&
+ m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
+ dst[outidx] = scaleFactor * reconstructOne();
+ outidx++;
+ }
+
+ m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
+ m_bufferOrigin = 0;
+
+ return outidx;
+}
+
+vector<double>
+Resampler::process(const double *src, int n)
+{
+ int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
+ vector<double> out(maxout, 0.0);
+ int got = process(src, out.data(), n);
+ assert(got <= maxout);
+ if (got < maxout) out.resize(got);
+ return out;
+}
+
+vector<double>
+Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
+{
+ Resampler r(sourceRate, targetRate);
+
+ int latency = r.getLatency();
+
+ // latency is the output latency. We need to provide enough
+ // padding input samples at the end of input to guarantee at
+ // *least* the latency's worth of output samples. that is,
+
+ int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
+
+ // that means we are providing this much input in total:
+
+ int n1 = n + inputPad;
+
+ // and obtaining this much output in total:
+
+ int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
+
+ // in order to return this much output to the user:
+
+ int m = int(ceil((double(n) * targetRate) / sourceRate));
+
+#ifdef DEBUG_RESAMPLER
+ cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << endl;
+#endif
+
+ vector<double> pad(n1 - n, 0.0);
+ vector<double> out(m1 + 1, 0.0);
+
+ int gotData = r.process(data, out.data(), n);
+ int gotPad = r.process(pad.data(), out.data() + gotData, pad.size());
+ int got = gotData + gotPad;
+
+#ifdef DEBUG_RESAMPLER
+ cerr << "resample: " << n << " in, " << pad.size() << " padding, " << got << " out (" << gotData << " data, " << gotPad << " padding, latency = " << latency << ")" << endl;
+#endif
+#ifdef DEBUG_RESAMPLER_VERBOSE
+ int printN = 50;
+ cerr << "first " << printN << " in:" << endl;
+ for (int i = 0; i < printN && i < n; ++i) {
+ if (i % 5 == 0) cerr << endl << i << "... ";
+ cerr << data[i] << " ";
+ }
+ cerr << endl;
+#endif
+
+ int toReturn = got - latency;
+ if (toReturn > m) toReturn = m;
+
+ vector<double> sliced(out.begin() + latency,
+ out.begin() + latency + toReturn);
+
+#ifdef DEBUG_RESAMPLER_VERBOSE
+ cerr << "first " << printN << " out (after latency compensation), length " << sliced.size() << ":";
+ for (int i = 0; i < printN && i < sliced.size(); ++i) {
+ if (i % 5 == 0) cerr << endl << i << "... ";
+ cerr << sliced[i] << " ";
+ }
+ cerr << endl;
+#endif
+
+ return sliced;
+}
+