summaryrefslogtreecommitdiff
path: root/libs/fluidsynth/src/fluid_conv.c
diff options
context:
space:
mode:
Diffstat (limited to 'libs/fluidsynth/src/fluid_conv.c')
-rw-r--r--libs/fluidsynth/src/fluid_conv.c320
1 files changed, 320 insertions, 0 deletions
diff --git a/libs/fluidsynth/src/fluid_conv.c b/libs/fluidsynth/src/fluid_conv.c
new file mode 100644
index 0000000000..1a790cfbfb
--- /dev/null
+++ b/libs/fluidsynth/src/fluid_conv.c
@@ -0,0 +1,320 @@
+/* FluidSynth - A Software Synthesizer
+ *
+ * Copyright (C) 2003 Peter Hanappe and others.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public License
+ * as published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA
+ */
+
+#include "fluid_conv.h"
+
+
+/* conversion tables */
+fluid_real_t fluid_ct2hz_tab[FLUID_CENTS_HZ_SIZE];
+fluid_real_t fluid_cb2amp_tab[FLUID_CB_AMP_SIZE];
+fluid_real_t fluid_atten2amp_tab[FLUID_ATTEN_AMP_SIZE];
+fluid_real_t fluid_posbp_tab[128];
+fluid_real_t fluid_concave_tab[128];
+fluid_real_t fluid_convex_tab[128];
+fluid_real_t fluid_pan_tab[FLUID_PAN_SIZE];
+
+/*
+ * void fluid_synth_init
+ *
+ * Does all the initialization for this module.
+ */
+void
+fluid_conversion_config(void)
+{
+ int i;
+ double x;
+
+ for (i = 0; i < FLUID_CENTS_HZ_SIZE; i++) {
+ fluid_ct2hz_tab[i] = (fluid_real_t) pow(2.0, (double) i / 1200.0);
+ }
+
+ /* centibels to amplitude conversion
+ * Note: SF2.01 section 8.1.3: Initial attenuation range is
+ * between 0 and 144 dB. Therefore a negative attenuation is
+ * not allowed.
+ */
+ for (i = 0; i < FLUID_CB_AMP_SIZE; i++) {
+ fluid_cb2amp_tab[i] = (fluid_real_t) pow(10.0, (double) i / -200.0);
+ }
+
+ /* NOTE: EMU8k and EMU10k devices don't conform to the SoundFont
+ * specification in regards to volume attenuation. The below calculation
+ * is an approx. equation for generating a table equivelant to the
+ * cb_to_amp_table[] in tables.c of the TiMidity++ source, which I'm told
+ * was generated from device testing. By the spec this should be centibels.
+ */
+ for (i = 0; i < FLUID_ATTEN_AMP_SIZE; i++) {
+ fluid_atten2amp_tab[i] = (fluid_real_t) pow(10.0, (double) i / FLUID_ATTEN_POWER_FACTOR);
+ }
+
+ /* initialize the conversion tables (see fluid_mod.c
+ fluid_mod_get_value cases 4 and 8) */
+
+ /* concave unipolar positive transform curve */
+ fluid_concave_tab[0] = 0.0;
+ fluid_concave_tab[127] = 1.0;
+
+ /* convex unipolar positive transform curve */
+ fluid_convex_tab[0] = 0;
+ fluid_convex_tab[127] = 1.0;
+ x = log10(128.0 / 127.0);
+
+ /* There seems to be an error in the specs. The equations are
+ implemented according to the pictures on SF2.01 page 73. */
+
+ for (i = 1; i < 127; i++) {
+ x = -20.0 / 96.0 * log((i * i) / (127.0 * 127.0)) / log(10.0);
+ fluid_convex_tab[i] = (fluid_real_t) (1.0 - x);
+ fluid_concave_tab[127 - i] = (fluid_real_t) x;
+ }
+
+ /* initialize the pan conversion table */
+ x = PI / 2.0 / (FLUID_PAN_SIZE - 1.0);
+ for (i = 0; i < FLUID_PAN_SIZE; i++) {
+ fluid_pan_tab[i] = (fluid_real_t) sin(i * x);
+ }
+}
+
+/*
+ * fluid_ct2hz
+ */
+fluid_real_t
+fluid_ct2hz_real(fluid_real_t cents)
+{
+ if (cents < 0)
+ return (fluid_real_t) 1.0;
+ else if (cents < 900) {
+ return (fluid_real_t) 6.875 * fluid_ct2hz_tab[(int) (cents + 300)];
+ } else if (cents < 2100) {
+ return (fluid_real_t) 13.75 * fluid_ct2hz_tab[(int) (cents - 900)];
+ } else if (cents < 3300) {
+ return (fluid_real_t) 27.5 * fluid_ct2hz_tab[(int) (cents - 2100)];
+ } else if (cents < 4500) {
+ return (fluid_real_t) 55.0 * fluid_ct2hz_tab[(int) (cents - 3300)];
+ } else if (cents < 5700) {
+ return (fluid_real_t) 110.0 * fluid_ct2hz_tab[(int) (cents - 4500)];
+ } else if (cents < 6900) {
+ return (fluid_real_t) 220.0 * fluid_ct2hz_tab[(int) (cents - 5700)];
+ } else if (cents < 8100) {
+ return (fluid_real_t) 440.0 * fluid_ct2hz_tab[(int) (cents - 6900)];
+ } else if (cents < 9300) {
+ return (fluid_real_t) 880.0 * fluid_ct2hz_tab[(int) (cents - 8100)];
+ } else if (cents < 10500) {
+ return (fluid_real_t) 1760.0 * fluid_ct2hz_tab[(int) (cents - 9300)];
+ } else if (cents < 11700) {
+ return (fluid_real_t) 3520.0 * fluid_ct2hz_tab[(int) (cents - 10500)];
+ } else if (cents < 12900) {
+ return (fluid_real_t) 7040.0 * fluid_ct2hz_tab[(int) (cents - 11700)];
+ } else if (cents < 14100) {
+ return (fluid_real_t) 14080.0 * fluid_ct2hz_tab[(int) (cents - 12900)];
+ } else {
+ return (fluid_real_t) 1.0; /* some loony trying to make you deaf */
+ }
+}
+
+/*
+ * fluid_ct2hz
+ */
+fluid_real_t
+fluid_ct2hz(fluid_real_t cents)
+{
+ /* Filter fc limit: SF2.01 page 48 # 8 */
+ if (cents >= 13500){
+ cents = 13500; /* 20 kHz */
+ } else if (cents < 1500){
+ cents = 1500; /* 20 Hz */
+ }
+ return fluid_ct2hz_real(cents);
+}
+
+/*
+ * fluid_cb2amp
+ *
+ * in: a value between 0 and 960, 0 is no attenuation
+ * out: a value between 1 and 0
+ */
+fluid_real_t
+fluid_cb2amp(fluid_real_t cb)
+{
+ /*
+ * cb: an attenuation in 'centibels' (1/10 dB)
+ * SF2.01 page 49 # 48 limits it to 144 dB.
+ * 96 dB is reasonable for 16 bit systems, 144 would make sense for 24 bit.
+ */
+
+ /* minimum attenuation: 0 dB */
+ if (cb < 0) {
+ return 1.0;
+ }
+ if (cb >= FLUID_CB_AMP_SIZE) {
+ return 0.0;
+ }
+ return fluid_cb2amp_tab[(int) cb];
+}
+
+/*
+ * fluid_atten2amp
+ *
+ * in: a value between 0 and 1440, 0 is no attenuation
+ * out: a value between 1 and 0
+ *
+ * Note: Volume attenuation is supposed to be centibels but EMU8k/10k don't
+ * follow this. Thats the reason for separate fluid_cb2amp and fluid_atten2amp.
+ */
+fluid_real_t
+fluid_atten2amp(fluid_real_t atten)
+{
+ if (atten < 0) return 1.0;
+ else if (atten >= FLUID_ATTEN_AMP_SIZE) return 0.0;
+ else return fluid_atten2amp_tab[(int) atten];
+}
+
+/*
+ * fluid_tc2sec_delay
+ */
+fluid_real_t
+fluid_tc2sec_delay(fluid_real_t tc)
+{
+ /* SF2.01 section 8.1.2 items 21, 23, 25, 33
+ * SF2.01 section 8.1.3 items 21, 23, 25, 33
+ *
+ * The most negative number indicates a delay of 0. Range is limited
+ * from -12000 to 5000 */
+ if (tc <= -32768.0f) {
+ return (fluid_real_t) 0.0f;
+ };
+ if (tc < -12000.) {
+ tc = (fluid_real_t) -12000.0f;
+ }
+ if (tc > 5000.0f) {
+ tc = (fluid_real_t) 5000.0f;
+ }
+ return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
+}
+
+/*
+ * fluid_tc2sec_attack
+ */
+fluid_real_t
+fluid_tc2sec_attack(fluid_real_t tc)
+{
+ /* SF2.01 section 8.1.2 items 26, 34
+ * SF2.01 section 8.1.3 items 26, 34
+ * The most negative number indicates a delay of 0
+ * Range is limited from -12000 to 8000 */
+ if (tc<=-32768.){return (fluid_real_t) 0.0;};
+ if (tc<-12000.){tc=(fluid_real_t) -12000.0;};
+ if (tc>8000.){tc=(fluid_real_t) 8000.0;};
+ return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
+}
+
+/*
+ * fluid_tc2sec
+ */
+fluid_real_t
+fluid_tc2sec(fluid_real_t tc)
+{
+ /* No range checking here! */
+ return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
+}
+
+/*
+ * fluid_tc2sec_release
+ */
+fluid_real_t
+fluid_tc2sec_release(fluid_real_t tc)
+{
+ /* SF2.01 section 8.1.2 items 30, 38
+ * SF2.01 section 8.1.3 items 30, 38
+ * No 'most negative number' rule here!
+ * Range is limited from -12000 to 8000 */
+ if (tc<=-32768.){return (fluid_real_t) 0.0;};
+ if (tc<-12000.){tc=(fluid_real_t) -12000.0;};
+ if (tc>8000.){tc=(fluid_real_t) 8000.0;};
+ return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
+}
+
+/*
+ * fluid_act2hz
+ *
+ * Convert from absolute cents to Hertz
+ */
+fluid_real_t
+fluid_act2hz(fluid_real_t c)
+{
+ return (fluid_real_t) (8.176 * pow(2.0, (double) c / 1200.0));
+}
+
+/*
+ * fluid_hz2ct
+ *
+ * Convert from Hertz to cents
+ */
+fluid_real_t
+fluid_hz2ct(fluid_real_t f)
+{
+ return (fluid_real_t) (6900 + 1200 * log(f / 440.0) / log(2.0));
+}
+
+/*
+ * fluid_pan
+ */
+fluid_real_t
+fluid_pan(fluid_real_t c, int left)
+{
+ if (left) {
+ c = -c;
+ }
+ if (c < -500) {
+ return (fluid_real_t) 0.0;
+ } else if (c > 500) {
+ return (fluid_real_t) 1.0;
+ } else {
+ return fluid_pan_tab[(int) (c + 500)];
+ }
+}
+
+/*
+ * fluid_concave
+ */
+fluid_real_t
+fluid_concave(fluid_real_t val)
+{
+ if (val < 0) {
+ return 0;
+ } else if (val > 127) {
+ return 1;
+ }
+ return fluid_concave_tab[(int) val];
+}
+
+/*
+ * fluid_convex
+ */
+fluid_real_t
+fluid_convex(fluid_real_t val)
+{
+ if (val < 0) {
+ return 0;
+ } else if (val > 127) {
+ return 1;
+ }
+ return fluid_convex_tab[(int) val];
+}