summaryrefslogtreecommitdiff
path: root/libs/canvas/curve.cc
diff options
context:
space:
mode:
authorPaul Davis <paul@linuxaudiosystems.com>2014-03-05 11:37:13 -0500
committerPaul Davis <paul@linuxaudiosystems.com>2014-03-05 11:38:30 -0500
commit58a30da03d31f5a30faddd76efe4e76b242f6687 (patch)
tree9ff5470017eae8497e033bc59e825dbe21c91aff /libs/canvas/curve.cc
parentf3300ec03ce82628aa4eb57565b1c05acb2915e9 (diff)
use a centripetal catmull-rom curve to smooth ArdourCanvas::Curve
See http://en.wikipedia.org/wiki/Centripetal_Catmull-Rom to understand the benefits of this.
Diffstat (limited to 'libs/canvas/curve.cc')
-rw-r--r--libs/canvas/curve.cc370
1 files changed, 195 insertions, 175 deletions
diff --git a/libs/canvas/curve.cc b/libs/canvas/curve.cc
index 54d36bbc9b..128aea5462 100644
--- a/libs/canvas/curve.cc
+++ b/libs/canvas/curve.cc
@@ -17,6 +17,7 @@
*/
+#include <cmath>
#include <exception>
#include <algorithm>
@@ -31,24 +32,9 @@ Curve::Curve (Group* parent)
, PolyItem (parent)
, Fill (parent)
, n_samples (0)
- , n_segments (512)
+ , points_per_segment (16)
+ , curve_type (CatmullRomCentripetal)
{
- set_n_samples (256);
-}
-
-/** Set the number of points to compute when we smooth the data points into a
- * curve.
- */
-void
-Curve::set_n_samples (Points::size_type n)
-{
- /* this only changes our appearance rather than the bounding box, so we
- just need to schedule a redraw rather than notify the parent of any
- changes
- */
- n_samples = n;
- samples.assign (n_samples, Duple (0.0, 0.0));
- interpolate ();
}
/** When rendering the curve, we will always draw a fixed number of straight
@@ -57,13 +43,14 @@ Curve::set_n_samples (Points::size_type n)
* render.
*/
void
-Curve::set_n_segments (uint32_t n)
+Curve::set_points_per_segment (uint32_t n)
{
/* this only changes our appearance rather than the bounding box, so we
just need to schedule a redraw rather than notify the parent of any
changes
*/
- n_segments = n;
+ points_per_segment = n;
+ interpolate ();
redraw ();
}
@@ -85,171 +72,204 @@ Curve::set (Points const& p)
void
Curve::interpolate ()
{
- Points::size_type npoints = _points.size ();
-
- if (npoints < 3) {
- return;
- }
-
- Duple p;
- double boundary;
-
- const double xfront = _points.front().x;
- const double xextent = _points.back().x - xfront;
-
- /* initialize boundary curve points */
-
- p = _points.front();
- boundary = round (((p.x - xfront)/xextent) * (n_samples - 1));
-
- for (Points::size_type i = 0; i < boundary; ++i) {
- samples[i] = Duple (i, p.y);
- }
-
- p = _points.back();
- boundary = round (((p.x - xfront)/xextent) * (n_samples - 1));
-
- for (Points::size_type i = boundary; i < n_samples; ++i) {
- samples[i] = Duple (i, p.y);
- }
-
- for (int i = 0; i < (int) npoints - 1; ++i) {
-
- Points::size_type p1, p2, p3, p4;
-
- p1 = max (i - 1, 0);
- p2 = i;
- p3 = i + 1;
- p4 = min (i + 2, (int) npoints - 1);
+ samples.clear ();
+ interpolate (_points, points_per_segment, CatmullRomCentripetal, false, samples);
+ n_samples = samples.size();
+}
- smooth (p1, p2, p3, p4, xfront, xextent);
- }
-
- /* make sure that actual data points are used with their exact values */
+/* Cartmull-Rom code from http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/19283471#19283471
+ *
+ * Thanks to Ted for his Java version, which I translated into Ardour-idiomatic
+ * C++ here.
+ */
- for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
- uint32_t idx = (((*p).x - xfront)/xextent) * (n_samples - 1);
- samples[idx].y = (*p).y;
- }
+/**
+ * Calculate the same values but introduces the ability to "parameterize" the t
+ * values used in the calculation. This is based on Figure 3 from
+ * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
+ *
+ * @param p An array of double values of length 4, where interpolation
+ * occurs from p1 to p2.
+ * @param time An array of time measures of length 4, corresponding to each
+ * p value.
+ * @param t the actual interpolation ratio from 0 to 1 representing the
+ * position between p1 and p2 to interpolate the value.
+ */
+static double
+__interpolate (double p[4], double time[4], double t)
+{
+ const double L01 = p[0] * (time[1] - t) / (time[1] - time[0]) + p[1] * (t - time[0]) / (time[1] - time[0]);
+ const double L12 = p[1] * (time[2] - t) / (time[2] - time[1]) + p[2] * (t - time[1]) / (time[2] - time[1]);
+ const double L23 = p[2] * (time[3] - t) / (time[3] - time[2]) + p[3] * (t - time[2]) / (time[3] - time[2]);
+ const double L012 = L01 * (time[2] - t) / (time[2] - time[0]) + L12 * (t - time[0]) / (time[2] - time[0]);
+ const double L123 = L12 * (time[3] - t) / (time[3] - time[1]) + L23 * (t - time[1]) / (time[3] - time[1]);
+ const double C12 = L012 * (time[2] - t) / (time[2] - time[1]) + L123 * (t - time[1]) / (time[2] - time[1]);
+ return C12;
+}
+
+/**
+ * Given a list of control points, this will create a list of points_per_segment
+ * points spaced uniformly along the resulting Catmull-Rom curve.
+ *
+ * @param points The list of control points, leading and ending with a
+ * coordinate that is only used for controling the spline and is not visualized.
+ * @param index The index of control point p0, where p0, p1, p2, and p3 are
+ * used in order to create a curve between p1 and p2.
+ * @param points_per_segment The total number of uniformly spaced interpolated
+ * points to calculate for each segment. The larger this number, the
+ * smoother the resulting curve.
+ * @param curve_type Clarifies whether the curve should use uniform, chordal
+ * or centripetal curve types. Uniform can produce loops, chordal can
+ * produce large distortions from the original lines, and centripetal is an
+ * optimal balance without spaces.
+ * @return the list of coordinates that define the CatmullRom curve
+ * between the points defined by index+1 and index+2.
+ */
+static void
+_interpolate (const Points& points, Points::size_type index, int points_per_segment, Curve::SplineType curve_type, Points& results)
+{
+ double x[4];
+ double y[4];
+ double time[4];
+
+ for (int i = 0; i < 4; i++) {
+ x[i] = points[index + i].x;
+ y[i] = points[index + i].y;
+ time[i] = i;
+ }
+
+ double tstart = 1;
+ double tend = 2;
+
+ if (curve_type != Curve::CatmullRomUniform) {
+ double total = 0;
+ for (int i = 1; i < 4; i++) {
+ double dx = x[i] - x[i - 1];
+ double dy = y[i] - y[i - 1];
+ if (curve_type == Curve::CatmullRomCentripetal) {
+ total += pow (dx * dx + dy * dy, .25);
+ } else {
+ total += pow (dx * dx + dy * dy, .5);
+ }
+ time[i] = total;
+ }
+ tstart = time[1];
+ tend = time[2];
+ }
+
+ int segments = points_per_segment - 1;
+ results.push_back (points[index + 1]);
+
+ for (int i = 1; i < segments; i++) {
+ double xi = __interpolate (x, time, tstart + (i * (tend - tstart)) / segments);
+ double yi = __interpolate (y, time, tstart + (i * (tend - tstart)) / segments);
+ results.push_back (Duple (xi, yi));
+ }
+
+ results.push_back (points[index + 2]);
}
-/*
- * This function calculates the curve values between the control points
- * p2 and p3, taking the potentially existing neighbors p1 and p4 into
- * account.
- *
- * This function uses a cubic bezier curve for the individual segments and
- * calculates the necessary intermediate control points depending on the
- * neighbor curve control points.
+/**
+ * This method will calculate the Catmull-Rom interpolation curve, returning
+ * it as a list of Coord coordinate objects. This method in particular
+ * adds the first and last control points which are not visible, but required
+ * for calculating the spline.
*
+ * @param coordinates The list of original straight line points to calculate
+ * an interpolation from.
+ * @param points_per_segment The integer number of equally spaced points to
+ * return along each curve. The actual distance between each
+ * point will depend on the spacing between the control points.
+ * @return The list of interpolated coordinates.
+ * @param curve_type Chordal (stiff), Uniform(floppy), or Centripetal(medium)
+ * @throws gov.ca.water.shapelite.analysis.CatmullRomException if
+ * points_per_segment is less than 2.
*/
void
-Curve::smooth (Points::size_type p1, Points::size_type p2, Points::size_type p3, Points::size_type p4,
- double xfront, double xextent)
+Curve::interpolate (const Points& coordinates, uint32_t points_per_segment, SplineType curve_type, bool closed, Points& results)
{
- int i;
- double x0, x3;
- double y0, y1, y2, y3;
- double dx, dy;
- double slope;
-
- /* the outer control points for the bezier curve. */
-
- x0 = _points[p2].x;
- y0 = _points[p2].y;
- x3 = _points[p3].x;
- y3 = _points[p3].y;
-
- /*
- * the x values of the inner control points are fixed at
- * x1 = 2/3*x0 + 1/3*x3 and x2 = 1/3*x0 + 2/3*x3
- * this ensures that the x values increase linearily with the
- * parameter t and enables us to skip the calculation of the x
- * values altogehter - just calculate y(t) evenly spaced.
- */
-
- dx = x3 - x0;
- dy = y3 - y0;
-
- if (dx <= 0) {
- /* error? */
- return;
- }
-
- if (p1 == p2 && p3 == p4) {
- /* No information about the neighbors,
- * calculate y1 and y2 to get a straight line
- */
- y1 = y0 + dy / 3.0;
- y2 = y0 + dy * 2.0 / 3.0;
-
- } else if (p1 == p2 && p3 != p4) {
-
- /* only the right neighbor is available. Make the tangent at the
- * right endpoint parallel to the line between the left endpoint
- * and the right neighbor. Then point the tangent at the left towards
- * the control handle of the right tangent, to ensure that the curve
- * does not have an inflection point.
- */
- slope = (_points[p4].y - y0) / (_points[p4].x - x0);
-
- y2 = y3 - slope * dx / 3.0;
- y1 = y0 + (y2 - y0) / 2.0;
-
- } else if (p1 != p2 && p3 == p4) {
-
- /* see previous case */
- slope = (y3 - _points[p1].y) / (x3 - _points[p1].x);
-
- y1 = y0 + slope * dx / 3.0;
- y2 = y3 + (y1 - y3) / 2.0;
-
-
- } else /* (p1 != p2 && p3 != p4) */ {
-
- /* Both neighbors are available. Make the tangents at the endpoints
- * parallel to the line between the opposite endpoint and the adjacent
- * neighbor.
- */
-
- slope = (y3 - _points[p1].y) / (x3 - _points[p1].x);
-
- y1 = y0 + slope * dx / 3.0;
-
- slope = (_points[p4].y - y0) / (_points[p4].x - x0);
-
- y2 = y3 - slope * dx / 3.0;
- }
-
- /*
- * finally calculate the y(t) values for the given bezier values. We can
- * use homogenously distributed values for t, since x(t) increases linearily.
- */
-
- dx = dx / xextent;
-
- int limit = round (dx * (n_samples - 1));
- const int idx_offset = round (((x0 - xfront)/xextent) * (n_samples - 1));
-
- for (i = 0; i <= limit; i++) {
- double y, t;
- Points::size_type index;
-
- t = i / dx / (n_samples - 1);
-
- y = y0 * (1-t) * (1-t) * (1-t) +
- 3 * y1 * (1-t) * (1-t) * t +
- 3 * y2 * (1-t) * t * t +
- y3 * t * t * t;
-
- index = i + idx_offset;
-
- if (index < n_samples) {
- Duple d (i, max (y, 0.0));
- samples[index] = d;
- }
- }
+ if (points_per_segment < 2) {
+ return;
+ }
+
+ // Cannot interpolate curves given only two points. Two points
+ // is best represented as a simple line segment.
+ if (coordinates.size() < 3) {
+ results = coordinates;
+ return;
+ }
+
+ // Copy the incoming coordinates. We need to modify it during interpolation
+ Points vertices = coordinates;
+
+ // Test whether the shape is open or closed by checking to see if
+ // the first point intersects with the last point. M and Z are ignored.
+ if (closed) {
+ // Use the second and second from last points as control points.
+ // get the second point.
+ Duple p2 = vertices[1];
+ // get the point before the last point
+ Duple pn1 = vertices[vertices.size() - 2];
+
+ // insert the second from the last point as the first point in the list
+ // because when the shape is closed it keeps wrapping around to
+ // the second point.
+ vertices.insert(vertices.begin(), pn1);
+ // add the second point to the end.
+ vertices.push_back(p2);
+ } else {
+ // The shape is open, so use control points that simply extend
+ // the first and last segments
+
+ // Get the change in x and y between the first and second coordinates.
+ double dx = vertices[1].x - vertices[0].x;
+ double dy = vertices[1].y - vertices[0].y;
+
+ // Then using the change, extrapolate backwards to find a control point.
+ double x1 = vertices[0].x - dx;
+ double y1 = vertices[0].y - dy;
+
+ // Actaully create the start point from the extrapolated values.
+ Duple start (x1, y1);
+
+ // Repeat for the end control point.
+ int n = vertices.size() - 1;
+ dx = vertices[n].x - vertices[n - 1].x;
+ dy = vertices[n].y - vertices[n - 1].y;
+ double xn = vertices[n].x + dx;
+ double yn = vertices[n].y + dy;
+ Duple end (xn, yn);
+
+ // insert the start control point at the start of the vertices list.
+ vertices.insert (vertices.begin(), start);
+
+ // append the end control ponit to the end of the vertices list.
+ vertices.push_back (end);
+ }
+
+ // When looping, remember that each cycle requires 4 points, starting
+ // with i and ending with i+3. So we don't loop through all the points.
+
+ for (Points::size_type i = 0; i < vertices.size() - 3; i++) {
+
+ // Actually calculate the Catmull-Rom curve for one segment.
+ Points r;
+
+ _interpolate (vertices, i, points_per_segment, curve_type, r);
+
+ // Since the middle points are added twice, once for each bordering
+ // segment, we only add the 0 index result point for the first
+ // segment. Otherwise we will have duplicate points.
+
+ if (results.size() > 0) {
+ r.erase (r.begin());
+ }
+
+ // Add the coordinates for the segment to the result list.
+
+ results.insert (results.end(), r.begin(), r.end());
+ }
}
/** Given a fractional position within the x-axis range of the