summaryrefslogtreecommitdiff
path: root/libs/ardour/sse_avx_functions_64bit_win.s
diff options
context:
space:
mode:
authorPaul Davis <paul@linuxaudiosystems.com>2015-05-12 21:27:27 -0400
committerPaul Davis <paul@linuxaudiosystems.com>2015-06-29 14:18:13 -0400
commit8bb54f41c66ff7db27dff8a06cc28e04bcd0c263 (patch)
tree5761c17bd570f0c9f260002ea460b8bc16e0a22e /libs/ardour/sse_avx_functions_64bit_win.s
parentb938129589e06814f4e217bc03bba7d7ebb49a6b (diff)
add windows-only AVX functions
Diffstat (limited to 'libs/ardour/sse_avx_functions_64bit_win.s')
-rw-r--r--libs/ardour/sse_avx_functions_64bit_win.s587
1 files changed, 587 insertions, 0 deletions
diff --git a/libs/ardour/sse_avx_functions_64bit_win.s b/libs/ardour/sse_avx_functions_64bit_win.s
new file mode 100644
index 0000000000..22829db98a
--- /dev/null
+++ b/libs/ardour/sse_avx_functions_64bit_win.s
@@ -0,0 +1,587 @@
+/*
+ Copyright (C) 2005-2006 Paul Davis, John Rigg
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+ Author: Sampo Savolainen
+ 64-bit conversion: John Rigg
+
+ $Id$
+*/
+
+#; Microsoft version of AVX sample processing functions
+
+#; void x86_sse_avx_mix_buffers_with_gain (float *dst, float *src, unsigned int nframes, float gain);
+
+.globl x86_sse_avx_mix_buffers_with_gain
+ .def x86_sse_avx_mix_buffers_with_gain; .scl 2; .type 32;
+.endef
+
+x86_sse_avx_mix_buffers_with_gain:
+
+#; due to Microsoft calling convention
+#; %rcx float *dst
+#; %rdx float *src
+#; %r8 unsigned int nframes
+#; %xmm3 float gain
+
+ pushq %rbp
+ movq %rsp, %rbp
+
+ #; save the registers
+ pushq %rbx #; must be preserved
+
+ #; move current max to %xmm0 for convenience
+ movss %xmm3, %xmm0
+
+ #; if nframes == 0, go to end
+ cmp $0, %r8
+ je .MBWG_END
+
+ #; Check for alignment
+
+ movq %rcx, %rax
+ andq $28, %rax #; mask alignment offset
+
+ movq %rdx, %rbx
+ andq $28, %rbx #; mask alignment offset
+
+ cmp %rax, %rbx
+ jne .MBWG_NONALIGN #; if buffer are not aligned between each other, calculate manually
+
+ #; if we are aligned
+ cmp $0, %rbx
+ jz .MBWG_AVX
+
+ #; Pre-loop, we need to run 1-7 frames "manually" without
+ #; SSE instructions
+
+.MBWG_PRELOOP:
+
+ #; gain is already in %xmm0
+ movss (%rdx), %xmm1
+ mulss %xmm0, %xmm1
+ addss (%rcx), %xmm1
+ movss %xmm1, (%rcx)
+
+ addq $4, %rcx #; dst++
+ addq $4, %rdx #; src++
+ decq %r8 #; nframes--
+ jz .MBWG_END
+
+ addq $4, %rbx
+
+ cmp $32, %rbx #; test if we've reached 32 byte alignment
+ jne .MBWG_PRELOOP
+
+.MBWG_AVX:
+
+ cmp $8, %r8 #; we know it's not zero, but if it's not >=4, then
+ jl .MBWG_NONALIGN #; we jump straight to the "normal" code
+
+ #; set up the gain buffer (gain is already in %xmm0)
+ vshufps $0x00, %ymm0, %ymm0, %ymm0 #; spread single float value to the first 128 bits of ymm0 register
+ vperm2f128 $0x00, %ymm0, %ymm0, %ymm0 #; extend the first 128 bits of ymm0 register to higher 128 bits
+
+.MBWG_AVXLOOP:
+
+ vmovaps (%rdx), %ymm1 #; source => xmm0
+ vmulps %ymm0, %ymm1, %ymm2 #; apply gain to source
+ vaddps (%rcx), %ymm2, %ymm1 #; mix with destination
+ vmovaps %ymm1, (%rcx) #; copy result to destination
+
+ addq $32, %rcx #; dst+=8
+ addq $32, %rdx #; src+=8
+
+ subq $8, %r8 #; nframes-=8
+ cmp $8, %r8
+ jge .MBWG_AVXLOOP
+
+ #; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
+ vzeroupper
+
+ cmp $0, %r8
+ je .MBWG_END
+
+ #; if there are remaining frames, the nonalign code will do nicely
+ #; for the rest 1-7 frames.
+
+.MBWG_NONALIGN:
+ #; not aligned!
+
+ #; gain is already in %xmm0
+
+.MBWG_NONALIGNLOOP:
+
+ movss (%rdx), %xmm1
+ mulss %xmm0, %xmm1
+ addss (%rcx), %xmm1
+ movss %xmm1, (%rcx)
+
+ addq $4, %rcx
+ addq $4, %rdx
+
+ decq %r8
+ jnz .MBWG_NONALIGNLOOP
+
+.MBWG_END:
+
+ popq %rbx
+
+ #; return
+ leave
+ ret
+
+
+#; void x86_sse_avx_mix_buffers_no_gain (float *dst, float *src, unsigned int nframes);
+
+.globl x86_sse_avx_mix_buffers_no_gain
+ .def x86_sse_avx_mix_buffers_no_gain; .scl 2; .type 32;
+.endef
+
+x86_sse_avx_mix_buffers_no_gain:
+
+#; due to Microsoft calling convention
+#; %rcx float *dst
+#; %rdx float *src
+#; %r8 unsigned int nframes
+
+ pushq %rbp
+ movq %rsp, %rbp
+
+ #; save the registers
+ pushq %rbx #; must be preserved
+
+ #; the real function
+
+ #; if nframes == 0, go to end
+ cmp $0, %r8
+ je .MBNG_END
+
+ #; Check for alignment
+
+ movq %rcx, %rax
+ andq $28, %rax #; mask alignment offset
+
+ movq %rdx, %rbx
+ andq $28, %rbx #; mask alignment offset
+
+ cmp %rax, %rbx
+ jne .MBNG_NONALIGN #; if not buffers are not aligned btween each other, calculate manually
+
+ cmp $0, %rbx
+ je .MBNG_AVX #; aligned at 32, rpoceed to AVX
+
+ #; Pre-loop, we need to run 1-7 frames "manually" without
+ #; AVX instructions
+
+.MBNG_PRELOOP:
+
+ movss (%rdx), %xmm0
+ addss (%rcx), %xmm0
+ movss %xmm0, (%rcx)
+
+ addq $4, %rcx #; dst++
+ addq $4, %rdx #; src++
+
+ decq %r8 #; nframes--
+ jz .MBNG_END
+
+ addq $4, %rbx #; one non-aligned byte less
+
+ cmp $32, %rbx #; test if we've reached 32 byte alignment
+ jne .MBNG_PRELOOP
+
+.MBNG_AVX:
+
+ cmp $8, %r8 #; if there are frames left, but less than 8
+ jl .MBNG_NONALIGN #; we can't run AVX
+
+.MBNG_AVXLOOP:
+
+ vmovaps (%rdx), %ymm0 #; source => xmm0
+ vaddps (%rcx), %ymm0, %ymm1 #; mix with destination
+ vmovaps %ymm1, (%rcx) #; copy result to destination
+
+ addq $32, %rcx #; dst+=8
+ addq $32, %rdx #; src+=8
+
+ subq $8, %r8 #; nframes-=8
+ cmp $8, %r8
+ jge .MBNG_AVXLOOP
+
+ #; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
+ vzeroupper
+
+ cmp $0, %r8
+ je .MBNG_END
+
+ #; if there are remaining frames, the nonalign code will do nicely
+ #; for the rest 1-7 frames.
+
+.MBNG_NONALIGN:
+ #; not aligned!
+ #;
+
+ movss (%rdx), %xmm0 #; src => xmm0
+ addss (%rcx), %xmm0 #; xmm0 += dst
+ movss %xmm0, (%rcx) #; xmm0 => dst
+
+ addq $4, %rcx
+ addq $4, %rdx
+
+ decq %r8
+ jnz .MBNG_NONALIGN
+
+.MBNG_END:
+
+ popq %rbx
+
+ #; return
+ leave
+ ret
+
+
+#; void x86_sse_avx_copy_vector (float *dst, float *src, unsigned int nframes);
+
+.globl x86_sse_avx_copy_vector
+ .def x86_sse_avx_copy_vector; .scl 2; .type 32;
+.endef
+
+x86_sse_avx_copy_vector:
+
+#; due to Microsoft calling convention
+#; %rcx float *dst
+#; %rdx float *src
+#; %r8 unsigned int nframes
+
+ pushq %rbp
+ movq %rsp, %rbp
+
+ #; save the registers
+ pushq %rbx #; must be preserved
+
+ #; the real function
+
+ #; if nframes == 0, go to end
+ cmp $0, %r8
+ je .CB_END
+
+ #; Check for alignment
+
+ movq %rcx, %rax
+ andq $28, %rax #; mask alignment offset
+
+ movq %rdx, %rbx
+ andq $28, %rbx #; mask alignment offset
+
+ cmp %rax, %rbx
+ jne .CB_NONALIGN #; if not buffers are not aligned btween each other, calculate manually
+
+ cmp $0, %rbx
+ je .CB_AVX #; aligned at 32, rpoceed to AVX
+
+ #; Pre-loop, we need to run 1-7 frames "manually" without
+ #; AVX instructions
+
+.CB_PRELOOP:
+
+ movss (%rdx), %xmm0
+ movss %xmm0, (%rcx)
+
+ addq $4, %rcx #; dst++
+ addq $4, %rdx #; src++
+
+ decq %r8 #; nframes--
+ jz .CB_END
+
+ addq $4, %rbx #; one non-aligned byte less
+
+ cmp $32, %rbx #; test if we've reached 32 byte alignment
+ jne .CB_PRELOOP
+
+.CB_AVX:
+
+ cmp $8, %r8 #; if there are frames left, but less than 8
+ jl .CB_NONALIGN #; we can't run AVX
+
+.CB_AVXLOOP:
+
+ vmovaps (%rdx), %ymm0 #; source => xmm0
+ vmovaps %ymm0, (%rcx) #; copy result to destination
+
+ addq $32, %rcx #; dst+=8
+ addq $32, %rdx #; src+=8
+
+ subq $8, %r8 #; nframes-=8
+ cmp $8, %r8
+ jge .CB_AVXLOOP
+
+ #; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
+ vzeroupper
+
+ cmp $0, %r8
+ je .CB_END
+
+ #; if there are remaining frames, the nonalign code will do nicely
+ #; for the rest 1-7 frames.
+
+.CB_NONALIGN:
+ #; not aligned!
+ #;
+
+ movss (%rdx), %xmm0 #; src => xmm0
+ movss %xmm0, (%rcx) #; xmm0 => dst
+
+ addq $4, %rcx
+ addq $4, %rdx
+
+ decq %r8
+ jnz .CB_NONALIGN
+
+.CB_END:
+
+ popq %rbx
+
+ #; return
+ leave
+ ret
+
+
+#; void x86_sse_avx_apply_gain_to_buffer (float *buf, unsigned int nframes, float gain);
+
+.globl x86_sse_avx_apply_gain_to_buffer
+ .def x86_sse_avx_apply_gain_to_buffer; .scl 2; .type 32;
+.endef
+
+x86_sse_avx_apply_gain_to_buffer:
+
+#; due to Microsoft calling convention
+#; %rcx float *buf 32(%rbp)
+#; %rdx unsigned int nframes
+#; %xmm2 float gain avx specific register
+
+ pushq %rbp
+ movq %rsp, %rbp
+
+ #; move current max to %xmm0 for convenience
+ movss %xmm2, %xmm0
+
+ #; the real function
+
+ #; if nframes == 0, go to end
+ cmp $0, %rdx
+ je .AG_END
+
+ #; Check for alignment
+
+ movq %rcx, %r8 #; buf => %rdx
+ andq $28, %r8 #; check alignment with mask 11100
+ jz .AG_AVX #; if buffer IS aligned
+
+ #; PRE-LOOP
+ #; we iterate 1-7 times, doing normal x87 float comparison
+ #; so we reach a 32 byte aligned "buf" (=%rdi) value
+
+.AGLP_START:
+
+ #; Load next value from the buffer into %xmm1
+ movss (%rcx), %xmm1
+ mulss %xmm0, %xmm1
+ movss %xmm1, (%rcx)
+
+ #; increment buffer, decrement counter
+ addq $4, %rcx #; buf++;
+
+ decq %rdx #; nframes--
+ jz .AG_END #; if we run out of frames, we go to the end
+
+ addq $4, %r8 #; one non-aligned byte less
+ cmp $16, %r8
+ jne .AGLP_START #; if more non-aligned frames exist, we do a do-over
+
+.AG_AVX:
+
+ #; We have reached the 32 byte aligned "buf" ("rcx") value
+ #; use AVX instructions
+
+ #; Figure out how many loops we should do
+ movq %rdx, %rax #; copy remaining nframes to %rax for division
+
+ shr $3, %rax #; unsigned divide by 8
+
+ #; %rax = AVX iterations
+ cmp $0, %rax
+ je .AGPOST_START
+
+ #; set up the gain buffer (gain is already in %xmm0)
+ vshufps $0x00, %ymm0, %ymm0, %ymm0 #; spread single float value to the first 128 bits of ymm0 register
+ vperm2f128 $0x00, %ymm0, %ymm0, %ymm0 #; extend the first 128 bits of ymm0 register to higher 128 bits
+
+.AGLP_AVX:
+
+ vmovaps (%rcx), %ymm1
+ vmulps %ymm0, %ymm1, %ymm2
+ vmovaps %ymm2, (%rcx)
+
+ addq $32, %rcx #; buf + 8
+ subq $8, %rdx #; nframes-=8
+
+ decq %rax
+ jnz .AGLP_AVX
+
+ #; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
+ vzeroupper
+
+ #; Next we need to post-process all remaining frames
+ #; the remaining frame count is in %rcx
+ cmpq $0, %rdx #;
+ jz .AG_END
+
+.AGPOST_START:
+
+ movss (%rcx), %xmm1
+ mulss %xmm0, %xmm1
+ movss %xmm1, (%rcx)
+
+ #; increment buffer, decrement counter
+ addq $4, %rcx #; buf++;
+
+ decq %rdx #; nframes--
+ jnz .AGPOST_START #; if we run out of frames, we go to the end
+
+.AG_END:
+
+ #; return
+ leave
+ ret
+
+#; end proc
+
+
+#; float x86_sse_avx_compute_peak(float *buf, long nframes, float current);
+
+.globl x86_sse_avx_compute_peak
+ .def x86_sse_avx_compute_peak; .scl 2; .type 32;
+.endef
+
+x86_sse_avx_compute_peak:
+
+#; due to Microsoft calling convention
+#; %rcx float* buf 32(%rbp)
+#; %rdx unsigned int nframes
+#; %xmm2 float current
+
+ pushq %rbp
+ movq %rsp, %rbp
+
+ #; move current max to %xmm0 for convenience
+ movss %xmm2, %xmm0
+
+ #; if nframes == 0, go to end
+ cmp $0, %rdx
+ je .CP_END
+
+ #; Check for alignment
+ movq %rcx, %r8 #; buf => %rdx
+ andq $28, %r8 #; mask bits 1 & 2
+ jz .CP_AVX #; if buffer IS aligned
+
+ #; PRE-LOOP
+ #; we iterate 1-7 times, doing normal x87 float comparison
+ #; so we reach a 32 byte aligned "buf" (=%rcx) value
+
+.LP_START:
+
+ #; Load next value from the buffer
+ movss (%rcx), %xmm1
+ maxss %xmm1, %xmm0
+
+ #; increment buffer, decrement counter
+ addq $4, %rcx #; buf++;
+
+ decq %rdx #; nframes--
+ jz .CP_END #; if we run out of frames, we go to the end
+
+ addq $4, %r8 #; one non-aligned byte less
+ cmp $32, %r8
+ jne .LP_START #; if more non-aligned frames exist, we do a do-over
+
+.CP_AVX:
+
+ #; We have reached the 32 byte aligned "buf" ("rdi") value
+
+ #; Figure out how many loops we should do
+ movq %rdx, %rax #; copy remaining nframes to %rax for division
+
+ shr $3, %rax #; unsigned divide by 8
+ jz .POST_START
+
+ #; %rax = AVX iterations
+
+ #; current maximum is at %xmm0, but we need to broadcast it to the whole ymm0 register..
+ vshufps $0x00, %ymm0, %ymm0, %ymm0 #; spread single float value to the all 128 bits of xmm0 register
+ vperm2f128 $0x00, %ymm0, %ymm0, %ymm0 #; extend the first 128 bits of ymm0 register to higher 128 bits
+
+.LP_AVX:
+
+ vmovaps (%rcx), %ymm1
+ vmaxps %ymm1, %ymm0, %ymm0
+
+ addq $32, %rcx #; buf+=8
+ subq $8, %rdx #; nframes-=8
+
+ decq %rax
+ jnz .LP_AVX
+
+ #; Calculate the maximum value contained in the 4 FP's in %ymm0
+ vshufps $0x4e, %ymm0, %ymm0, %ymm1 #; shuffle left & right pairs (1234 => 3412) in each 128 bit half
+ vmaxps %ymm1, %ymm0, %ymm0 #; maximums of the four pairs, if each of 8 elements was unique, 4 unique elements left now
+ vshufps $0xb1, %ymm0, %ymm0, %ymm1 #; shuffle the floats inside pairs (1234 => 2143) in each 128 bit half
+ vmaxps %ymm1, %ymm0, %ymm0 #; maximums of the four pairs, we had up to 4 unique elements was unique, 2 unique elements left now
+ vperm2f128 $0x01, %ymm0, %ymm0, %ymm1 #; swap 128 bit halfs
+ vmaxps %ymm1, %ymm0, %ymm0 #; the result will be - all 8 elemens are maximums
+
+ #; now every float in %ymm0 is the same value, current maximum value
+
+ #; Next we need to post-process all remaining frames
+ #; the remaining frame count is in %rcx
+
+ #; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
+ vzeroupper
+
+ #; if no remaining frames, jump to the end
+ cmp $0, %rdx
+ je .CP_END
+
+.POST_START:
+
+ movss (%rcx), %xmm1
+ maxss %xmm1, %xmm0
+
+ addq $4, %rcx #; buf++;
+
+ decq %rdx #; nframes--;
+ jnz .POST_START
+
+.CP_END:
+
+ #; return value is in xmm0
+
+ #; return
+ leave
+ ret
+
+#; end proc \ No newline at end of file